화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.23, No.2, 157-163, April, 2012
에폭시 아크릴레이트를 이용한 감광성 폴리머 저항 페이스트 조성
Compositions for Photosensitive Polymer Resistor Paste Using Epoxy Acrylates
E-mail:
초록
6종의 에폭시 아크릴레이트와 전도성 카본블랙을 이용하여 감광성 저항 페이스트를 제작하고, 그들의 알칼리 수용액에 대한 현상성과 열경화 후 저항값을 평가하였다. 자외선에 의한 광경화성 및 알칼리 용액에 대한 현상성을 부여하기 위해서 카르복시기를 가진 에폭시 아크릴레이트 올리고머, 아크릴레이트 모노머, 광개시제 등이 사용되었다. 또한 열경화성 조성물을 얻기 위하여 유기 과산화물을 페이스트에 첨가하였다. 실험 결과, 올리고머의 종류에 따라서 일부 페이스트들은 현상이 되지 않았으며, 현상된 페이스트 중, 측정된 저항값은 동일한 카본블랙 함량에서도 페이스트 조성에 따라 다른 값들을 나타내었다. 최종적으로 최적의 올리고머를 선정하고, 카본블랙의 함량과 모노머의 종류, 경화 온도를 조절함으로써 약 0.5 kΩ/sq.의 면저항을 나타내는 감광성 저항 페이스트 조성물을 얻을 수 있었다.
Using six kinds of epoxy acrylates and a conductive carbon black, photosensitive resistor pastes were fabricated and then their developability in alkaline aqueous solution and the resistance values after thermal curing were evaluated. In order to impart the photocurability by UV exposure and the developability on alkaline solution, epoxy acrylate oligomers with carboxyl group, acrylate monomers, a photoinitiator and so forth were used. In addition, an organic peroxide was added into the paste to get a thermally curable composition. As a result, some of the pastes were not developed depending on the kinds of oligomers and, in the developed pastes, the measured resistance showed the different values depending on their compositions, even though they contain the same amount of carbon black. Finally, the optimum oligomer was selected and then, by adjusting the amount of carbon black, the kind of monomer and the curing temperature, the photosensitive resistor paste composition which showed the sheet resistance of about 0.5 kΩ/sq. could be obtained.
  1. Bhattacharya SK, Tummala RR, J. Mater. Sci., Mater.Electron., 11, 253 (2000)
  2. Jillek W, Yung WKC, Int. J. Adv. Manuf. Technol., 25, 350 (2005)
  3. Norlyng S, Adv. Microelectron., May/June 2003, 9 (2003)
  4. Doughherty JP, Galvagni J, Marcanti L, Sheffield R, Sandborn P, Ulrich R, Proc. of the Capacitor and Resistor Technology Symposium (CARTS), Scottsdale, AZ, April (2003)
  5. Fukuoka Y, The Latest Trend of Embedded Passive and Active Devices Technology, ed. Y. Fukuoka, CMC Publishing Co. LTD., Tokyo (2007)
  6. Nikkei Business Publications, Nikkei Electronics Asia, Tokyo,Japan, May 2003, 30 (2003)
  7. Varadarajan MG, Lee KJ, Bhattacharya SK, Bhattacharjee A, Wan L, Pucha R, Tummala RR, Sitaraman S, Proc. IEEE Conf. High Density Microsystem Design and Packaging and Component Failure Analysis (HDP '06), 188 (2006)
  8. Park H, J. IEEK, SD., 45, 72 (2008)
  9. U. S. Patent 6,229,098; 6,256,866 (2001)
  10. IPC-2316 Design Guide for Embedded Passive Device Printed Boards, March (2007)
  11. U. S. Patent 5,994,997 (1999); U. S. Patent 6,130,601 (2000)
  12. U. S. Patent 6,030,553 (2000)
  13. Dziedzic A, Rebenklau L, Golonka LJ, Wolter KJ, Microelectron. Reliab., 43, 377 (2003)
  14. U. S. Patent 6,225,035 (2001)
  15. Kim DK, Park SD, Lee KB, Kyoung JB, Appl. Chem. Eng., 21(4), 411 (2010)
  16. Inagaki S, Journal of the Society of Rubber Industry of Japan., 79, 406 (2006)
  17. Park SD, Kang NM, Lim JK, Kim DK, Kang NK, Park JC, J. Kor. Ceram. Soc., 41, 313 (2004)
  18. Mataki H, Hanabata M, Photosensitive resin of a new time - Application of photoreactive resin, ed. K. Akamatsu, CMC Publishing Co. LTD., Tokyo, 201 (2003)