화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.23, No.2, 164-168, April, 2012
유기산 및 효소적 전처리를이용한다시마에서바이오에탄올 생산
Organic Acid and Enzyme Pretreatment of Laminaria japonica for Bio-ethanol Production
E-mail:
초록
본 연구는 갈조류인 다시마의 당 성분 함량에 대한 분석과 효소 및 유기산 가수분해물을 이용한 생물학적 바이오에탄올 생산에 대해 연구하였다. HPLC를 이용한 당 성분 분석 결과 alginate가 total sugar의 65.99%로 가장 많은 것으로 확인되었으며, laminaran과 mannitol이 각각 6.24, 27.77%로 나타났다. 1.5% acetic acid를 이용하여 121 ℃, 60 min 동안 가수분해 결과 최대 1.874 g/L의 환원당이 생성되었으며, ascorbic acid의 경우 2.0%에서 최대 4.291 g/L의 환원당이 생성되는 것으로 나타났다. Alginate lyase와 laminarinase와 같은 효소를 이용한 가수분해에서 환원당 생성량은 최대 2.219 g/L였다. 다시마 가수분해물을 이용한 에탄올 발효 결과 유기산을 처리했을 때에는 에탄올 생산량이 오히려 감소하는 것으로 나타났으며, alginate lyase와 laminarinase를 혼합처리 했을 때 에탄올 생산량이 1.26 g/L로 가장 높았다.
We investigated for the production of biological bio-ethanol from Laminaria japonica using the hydrolysis reaction of enzymes and organic acids and the polysaccharide content was also analyzed. The composition of the polysaccharide was characterized as 65.99% alginate, 6.24% laminaran and 27.77% mannitol. The optimum concentration for reducing the sugar conversion by Laminaria japonica was found to be 1.874 g/L at an acetic acid concentration of 1.5%, 121 ℃ for 60 min, and for an ascorbic acid of 2.0%, 4.291 g/L was produced in the same condition. The enzyme hydrolysis such as alginate lyase and laminarinase contained the maximum 2.219 g/L reducing sugar. In the result of ethanol fermentation using hydrolysate of Laminaria japonica, the organic acid treatment showed a high of reducing sugar yield, but decreased the ethanol yield, and then the maximum ethanol production obtained was 1.26 g/L using the mixed treated of enzyme.
  1. Park JI, Woo HC, Lee JH, Korean Chem. Eng. Res., 46(5), 833 (2008)
  2. Lee SM, Kim JH, Cho HY, Joo H, Lee JH, J. Korean Ind. Eng. Chem., 20(5), 517 (2009)
  3. Balat M, Balat H, Applied Energy., 86, 2273 (2009)
  4. Tolbert NE, Regulation of atmospheric CO2 and O2 by photosynthetic Carbon Metabolism, ed. J. Preiss, 8, Oxford University Press, Oxford (1994)
  5. Do JR, Nam YJ, Park JH, Jo JH, J. Kor. Fish. Soc., 30, 428 (1997)
  6. Hirano A, Ueda R, Hirayama S, Ogushi Y, Energy, 22(2-3), 137 (1997)
  7. Saha BC, Cotta MA, Enzyme Microb. Technol., 41(4), 528 (2007)
  8. Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G, Trends Biotechnol., 24, 549 (2006)
  9. Renewable Global Status Report. Renewable energy network for the 21st century (REN21). Washington, DC: Worldwatch Institute Paris, REN21 Secretariat (2009)
  10. Kim JH, Byun DS, Godber JS, Choi JS, Choi WC, Kim HR, Appl. Microbiol. Biotechnol., 63(5), 553 (2004)
  11. Kang HI, Ko MS, Kim HJ, Kim SW, Bae TJ, J.Kor. Fish. Soc., 29, 716 (1996)
  12. Lee SA, Kim JU, Jung JG, Kim IH, Lee SH, Kim SJ, Lee JH, Kor. J. Biotechnol. Bioeng., 21, 389 (2006)
  13. Park YH, Bull. Korean Fish. Soc., 2, 71 (1969)
  14. Lee SM, Lee JH, Appl. Chem. Eng., 21(2), 154 (2010)
  15. Choi DB, Sim HS, Piao YL, Ying W, Cho H, J. Ind. Eng. Chem., 15(1), 12 (2009)