화학공학소재연구정보센터
Macromolecular Research, Vol.20, No.5, 459-464, May, 2012
Synthesis and Characterization of Novel Crosslinkable Poly(propylenedioxythiophene) Derivative as a Buffer Layer for Organic Light-Emitting Diode Applications
E-mail:,
A new crosslinkable polythiophene derivative, poly(hexynyl2-PDOT-co-heptyl2-PDOT), with propylenedioxythiophene moiety containing solubilizing and crosslinkable substitutents as a pendant group were synthesized by oxidative polymerization using FeCl3. The resulting copolymer was soluble in organic solvents and spun cast onto the indium tin oxide-coated glass substrate to create a uniform thin film. After thermal crosslinking and rinsing of the crosslinked thin film using chloroform, the π-π transition peak and the absorption edge appeared at almost the same wavelength as that of the untreated copolymer. We fabricated organic light-emitting diodes (OLEDs) in ITO/buffer layer/poly[2-(2'-ethylhexyloxy)-5-methoxy-1,4-phenylenevinylene] (MEH-PPV)/LiF/Ca/Al configuration using either poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) or poly(hexynyl2- PDOT-co-heptyl2-PDOT) as buffer layers. Due to the intrinsic conductivity of poly(hexynyl2-PDOT-co-heptyl2-PDOT) vs. that of PEDOT:PSS caused decreased OLED performance. The turn-on voltage of the OLED using poly(hexynyl2-PDOT-co-heptyl2-PDOT) buffer layer was observed at 5 V. The maximum brightness and luminance efficiencies were 2,597 cd/m2 at 12 V and 0.3 cd/A, respectively.
  1. Choi SK, Gal YS, Jin SH, Kim HK, Chem. Rev., 100(4), 1645 (2000)
  2. Liu JZ, Lam JWY, Tang BZ, Chem. Rev., 109(11), 5799 (2009)
  3. Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB, Chem. Rev., 109(3), 897 (2009)
  4. Jilian NF, Almantas P, Bruno FN, Leni CA, Sariciftci NS, Ana FN, Synth. Met., 160, 1654 (2010)
  5. Rider DA, Worfolk BJ, Harris KD, Lalany A, Shahbazi K, Fleischauer MD, Brett MJ, Buriak JM, Adv. Funct. Mater., 20(15), 2404 (2010)
  6. Oh JW, Choi J, Luong BT, Kim N, Macromol. Res., 18(1), 8 (2010)
  7. Lee YZ, Chen XW, Chen SA, Wei PK, Fann WS, J. Am. Chem. Soc., 123(10), 2296 (2001)
  8. Tanase C, Wildeman J, Blom PWM, Adv. Funct. Mater., 15(12), 2011 (2005)
  9. HEYWANG G, JONAS F, Adv. Mater., 4(2), 116 (1992)
  10. Groenendaal L, Zotti G, Aubert PH, Waybright SM, Reynolds JR, Adv. Mater., 15(11), 855 (2003)
  11. Groenendaal BL, Jonas F, Freitag D, Pielartzik H, Reynolds JR, Adv. Mater., 12(7), 481 (2000)
  12. Winter I, Reece C, Hormes J, Heywang G, Jonas F, Chem. Phys., 194, 207 (1995)
  13. Kumar A, Reynolds JR, Macromolecules, 29(23), 7629 (1996)
  14. Welsh DM, Kloeppner LJ, Madrigal L, Pinto MR, Thompson BC, Schanze KS, Abboud KA, Powell D, Reynolds JR, Macromolecules, 35(17), 6517 (2002)
  15. Blanchard P, Cappon A, Levillain E, Nicolas Y, Frere P, Roncali J, Org. Lett., 4, 607 (2002)
  16. Wang C, Schindler JL, Kanewurf CR, Kanatzidis MG, Chem. Mater., 7, 58 (1995)
  17. Shin WS, Kim MK, Jin SH, Shim YB, Lee JK, Lee JW, Gal YS, Mol. Cryst. Liq. Cryst., 444, 129 (2006)
  18. Chen TA, Wu XM, Rieke RD, J. Am. Chem. Soc., 117(1), 233 (1995)
  19. Kim SH, Rieke RD, Tetrahedron., 66, 3135 (2010)
  20. Jeremy K, Chris K, Brian M, Rick G, Michael DM, Don K, Tetrahedron Lett., 47, 6339 (2006)
  21. Niu YH, Huang J, Cao Y, Adv. Mater., 15(10), 807 (2003)
  22. Kim HS, Lee H, Jeon PE, Jeong K, Lee JH, Yi Y, J. Appl. Phys., 108, 053701 (2010)