화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.3, 941-947, May, 2012
Study of solvent casting/particulate leaching technique membranes in pervaporation for dehydration of caprolactam
E-mail:
New porous and rough PVA (polyvinyl alcohol) membranes were synthesized by solvent casting/particulate leaching technique to improve caprolactam (CPL) pervaporation (PV) separation dehydration process. The membranes were characterized by FTIR, SEM, XRD, and contact angle measurements. On account of their special structure, solvent casting/particulate leaching technique membranes showed different surface morphologies compared with the original PVA membrane with enhanced hydrophilicity. By evaluating PV performance and mechanism, a PV transport equation was introduced to evaluate composite membrane permeation flux, separation factor, diffusivity/sorptivity selectivity, and activation energy. The maximum flux obtained in this work was greatly improved to 3.2 kg/m2 h and reached industrial application levels for separating CPL/water mixtures (CPL 70 wt%).
  1. Volkova TV, Vygodskii YS, Zabegaeva ON, Zubavichus YV, Il’ina MN, Krasnov AP, Afonicheva OV, Lozinskaya EI, Garbuzova IA, Shaplov AS, J. Appl.Polym. Sci., 114, 577 (2009)
  2. van Delden ML, Drumm C, Kuipers NJM, de Haan AB, Chem. Eng. Technol., 29(10), 1221 (2006)
  3. Liu YC, Xu W, Xiong YQ, Xu WJ, J. Appl. Polym. Sci., 108, 3177 (2008)
  4. Van der Heijden AEDM, Geertman RM, Bennema P, J. Phys. D: Appl. Phys., 24, 123 (1991)
  5. Poschmann M, Ulrich J, J. Cryst. Growth., 167, 248 (1996)
  6. Villegas M, Vidaurre EFC, Habert AC, Gottifredi JC, J. Membr. Sci., 367, 103 (2011)
  7. Tsai HA, Ye YL, Lee KR, Huang SH, Suen MC, Lai JY, J. Membr. Sci., 368, 254 (2011)
  8. Shen D, Xiao W, Yang JH, Chu NB, Lu JM, Yin DH, Wang JQ, Sep. Purif. Technol., 76(3), 308 (2011)
  9. Pakkethati K, Boonmalert A, Chaisuwan T, Wongkasemjit S, Desalination, 267(1), 73 (2011)
  10. Li Q, Yu P, Zhu TR, Zhang L, Li Q, Luo YB, Desalination Water Treat., 16, 304 (2010)
  11. Zhang L, Yu P, Luo YB, Sep. Purif. Technol., 52(1), 77 (2006)
  12. Zhang L, Yu P, Luo YB, J. Appl. Polym. Sci., 103(6), 4005 (2007)
  13. Zhang L, Yu P, Luo YB, J. Membr. Sci., 306(1-2), 93 (2007)
  14. Zhu TR, Luo YB, Lin YW, Li Q, Yu P, Zeng M, Sep. Purif. Technol., 74(2), 242 (2010)
  15. Chen J, Huang JQ, Li JD, Zhan X, Chen CX, Desalination, 256(1-3), 148 (2010)
  16. Khoonsap S, Amnuaypanich S, J. Membr. Sci., 367, 182 (2011)
  17. Sabetghadam A, Mohammadi T, Compos. Interfaces, 17(2-3), 223 (2010)
  18. Jeun JP, Jeon YK, Nho YC, Kang PH, J. Ind. Eng. Chem., 15(3), 430 (2009)
  19. Kim D, Kim Y, Nam S, Lim J, J. Ind. Eng. Chem., 12(5), 762 (2006)
  20. Kim HS, Kyong CS, Sung GY, Kwak CH, Lee JK, J. Ind. Eng. Chem., 5(1), 65 (1999)
  21. Kim DS, Park IC, Cho HI, Kim DH, Moonc GY, Lee HK, Rh JW, J. Ind. Eng. Chem., 15(2), 265 (2009)
  22. Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R, Biomaterial., 14, 323 (1993)
  23. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP, Polymer, 35(5), 1068 (1994)
  24. Wang XP, J. Membr. Sci., 170(1), 71 (2000)
  25. Uragami T, Tsukamoto K, Inui K, Miyata T, Macromol. Chem. Phys., 199, 49 (1998)
  26. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, New York (1991)
  27. Krimm S, Liang CY, Sutherland GBBM, J. Polym. Sci., 22, 227 (1956)
  28. Korchev AS, Konovalova T, Cammarata V, Kispert L, Slaten L, Mills G, Langmuir, 22(1), 375 (2006)
  29. Burshe MC, Sawant SB, Joshi JB, Pangarkar VG, Sep. Purif. Technol., 12(2), 145 (1997)
  30. Fujita H, Kishimoto A, Matsumoto KM, Trans. Faraday Soc., 56, 424 (1960)
  31. Cussler EL, J. Membr. Sci., 52, 275 (1990)
  32. Kulkarni SS, Tambe SM, Kittur AA, Kariduraganavar MY, J. Appl. Polym. Sci., 99(4), 1380 (2006)
  33. Sun HL, Lu LY, Chen X, Jiang ZY, Appl. Surf. Sci., 254(17), 5367 (2008)