Polymer(Korea), Vol.36, No.3, 321-325, May, 2012
KOH 활성화 효과에 의한 흑연나노섬유의 전기화학적 거동
Effect of KOH Activation on Electrochemical Behaviors of Graphite Nanofibers
E-mail:
초록
본 연구에서는 화학적으로 활성 흑연나노섬유를 제조하여 그에 따른 전기화학적 거동을 확인하였다. 활성화제로 KOH를 사용하였으며, KOH와 흑연나노섬유의 비를 무게비로 각각 0, 1, 2, 4, 및 5로 처리하여 표면과 기공 특성을 연구하였고, 그에 따른 전기화학적 거동을 살펴보았다. 활성화된 흑연나노섬유의 결정구조와 표면특성은 각각 X-선 회절분석법(XRD), 주사전자현미경(SEM) 분석방법을 이용하여 확인하였으며, 기공 특성은 비표면적 장치(BET)를 이용하였으며 질소흡착 등온선에 의해 조사하였다. 전기화학적 특성은 10 mV/s의 주사속도로 순환전류전압(cyclic voltammetry)을 통한 곡선으로 고찰하였으며 정전류법(galvanostatic method)으로 측정된 충방전 곡선을 통해 비축전용량을 계산하였다. 실험 결과로부터, 활성 흑연나노섬유의 전기화학적 거동은 KOH 양이 증가함에 따라 향상되었으며, 4 배 처리된 활성 흑연나노섬유가 최대의 비축전용량을 가진 것으로 나타났다. 이것은 KOH 활성화에 의해 활성 흑연나노섬유의 비표면적과 기공부피가 증가하기 때문인 것으로 사료된다.
In this work, we prepared the activated graphite nanofibers (A-GNFs) via chemical activation with KOH/GNFs ratios in a range of 0 to 5. The effect of KOH activation was studied in the surface and pore properties of the samples for electrochemical performance. The surface properties of A-GNFs were characterized by XRD and SEM measurements. The textural properties of the A-GNFs were investigated by N2/77 K adsorption isotherms using Brunauer-Emmett-Teller (BET) equation. Their electrochemical behaviors were investigated by cyclic voltammetry and galvanostatic charge-discharge performance. From the results, electrochemical performances of the A-GNFs were improved with increasing the ratio of KOH reagent. It was found that specific surface area and total pore volume of the A-GNFs were increased by KOH activation.
- Frackowiak E, Phys. Chem. Chem. Phys., 9, 1774 (2007)
- Simon P, Gogotsi Y, Nat. Mater., 7, 845 (2008)
- Conway BE, in Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum, New York (1999)
- Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL, Science., 313, 1760 (2006)
- Miller JR, Simon P, Science., 321, 651 (2008)
- Yoon SW, Kim DH, Lee BS, Lee BS, Moon GY, Byun H, Rhim JW, Polym.(Korea), 34(1), 45 (2010)
- Park SJ, Jeong HJ, Nah C, Polym.(Korea), 27(1), 46 (2003)
- Karden E, Ploumen S, Fricke B, Miller T, Snyder K, J. Power Sources, 168(1), 2 (2007)
- Burke A, J. Power Sources, 91(1), 37 (2000)
- Frackowiak E, Beguin F, Carbon., 39, 937 (2001)
- Kim JI, Park SJ, J. Solid State Chem., 184, 2184 (2011)
- Yoo HM, Heo GY, Park SJ, Carbon Lett., 12, 252 (2011)
- Jiang J, Gao Q, Xia K, Hu J, Micropor. Mesopor. Mater., 118, 28 (2009)
- Huang CW, Hsu CH, Kuo PL, Hsieh CT, Teng H, Carbon., 49, 895 (2011)
- Balathanigaimani MS, Shim WG, Lee MJ, Kim C, Lee JW, Moon H, Electrochem. Commun., 10, 868 (2008)
- Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu ZH, Lu GQ, J. Power Sources, 195(3), 912 (2010)
- Jurewicz K, Pietrzak R, Nowicki P, Wachowsk H, Electrochim. Acta, 53(16), 5469 (2008)
- Burke A, Electrochim. Acta., 53, 1083 (2008)
- Kim BJ, Lee YSE, Park SJ, J. Colloid Interface Sci., 318(2), 530 (2008)
- Park SJ, Park JM, Seo MK, J. Colloid Interface Sci., 337(1), 300 (2009)
- Meng LY, Park SJ, J. Colloid Interface Sci., 352(2), 498 (2010)
- Jung MJ, Kim JW, Im JS, Park SJ, Lee YS, J. Ind. Eng. Chem., 15(3), 410 (2009)
- Kim BJ, Park SJ, Polym.(Korea), 35(1), 35 (2011)
- Okada K, Yamamoto N, Kameshima Y, Yasumori A, J. Colloid Interface Sci., 262(1), 179 (2003)
- Aida T, Murayama I, Yamada K, Morita M, J. Power Sources, 166(2), 462 (2007)
- Hayashi J, Horikawa T, Takeda I, Muroyama K, Ani FN, Carbon., 40, 2381 (2002)
- Xu B, Chen YF, Wei G, Cao GP, Zhang H, Yang YS, Mater. Chem. Phys., 124(1), 504 (2010)
- Yorgun S, Vural N, Demiral H, Micropor. Mesopor. Mater., 122, 189 (2009)
- Li KQ, Zheng Z, Li Y, J. Hazard. Mater., 181(1-3), 440 (2010)
- Kim BJ, Seo MK, Choi KE, Park SJ, J. Ind. Eng.Chem., 22, 167 (2011)
- Yoo HM, Lee SY, Kim BJ, Park SJ, Carbon Lett., 12, 112 (2011)
- Kim YH, Kim IJ, Min BG, Park SJ, Res. Chem. Intermed., 36, 703 (2010)
- Xia K, Gao Q, Jiang J, Hu J, Carbon., 46, 1718 (2008)