화학공학소재연구정보센터
Polymer(Korea), Vol.36, No.3, 321-325, May, 2012
KOH 활성화 효과에 의한 흑연나노섬유의 전기화학적 거동
Effect of KOH Activation on Electrochemical Behaviors of Graphite Nanofibers
E-mail:
초록
본 연구에서는 화학적으로 활성 흑연나노섬유를 제조하여 그에 따른 전기화학적 거동을 확인하였다. 활성화제로 KOH를 사용하였으며, KOH와 흑연나노섬유의 비를 무게비로 각각 0, 1, 2, 4, 및 5로 처리하여 표면과 기공 특성을 연구하였고, 그에 따른 전기화학적 거동을 살펴보았다. 활성화된 흑연나노섬유의 결정구조와 표면특성은 각각 X-선 회절분석법(XRD), 주사전자현미경(SEM) 분석방법을 이용하여 확인하였으며, 기공 특성은 비표면적 장치(BET)를 이용하였으며 질소흡착 등온선에 의해 조사하였다. 전기화학적 특성은 10 mV/s의 주사속도로 순환전류전압(cyclic voltammetry)을 통한 곡선으로 고찰하였으며 정전류법(galvanostatic method)으로 측정된 충방전 곡선을 통해 비축전용량을 계산하였다. 실험 결과로부터, 활성 흑연나노섬유의 전기화학적 거동은 KOH 양이 증가함에 따라 향상되었으며, 4 배 처리된 활성 흑연나노섬유가 최대의 비축전용량을 가진 것으로 나타났다. 이것은 KOH 활성화에 의해 활성 흑연나노섬유의 비표면적과 기공부피가 증가하기 때문인 것으로 사료된다.
In this work, we prepared the activated graphite nanofibers (A-GNFs) via chemical activation with KOH/GNFs ratios in a range of 0 to 5. The effect of KOH activation was studied in the surface and pore properties of the samples for electrochemical performance. The surface properties of A-GNFs were characterized by XRD and SEM measurements. The textural properties of the A-GNFs were investigated by N2/77 K adsorption isotherms using Brunauer-Emmett-Teller (BET) equation. Their electrochemical behaviors were investigated by cyclic voltammetry and galvanostatic charge-discharge performance. From the results, electrochemical performances of the A-GNFs were improved with increasing the ratio of KOH reagent. It was found that specific surface area and total pore volume of the A-GNFs were increased by KOH activation.
  1. Frackowiak E, Phys. Chem. Chem. Phys., 9, 1774 (2007)
  2. Simon P, Gogotsi Y, Nat. Mater., 7, 845 (2008)
  3. Conway BE, in Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum, New York (1999)
  4. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL, Science., 313, 1760 (2006)
  5. Miller JR, Simon P, Science., 321, 651 (2008)
  6. Yoon SW, Kim DH, Lee BS, Lee BS, Moon GY, Byun H, Rhim JW, Polym.(Korea), 34(1), 45 (2010)
  7. Park SJ, Jeong HJ, Nah C, Polym.(Korea), 27(1), 46 (2003)
  8. Karden E, Ploumen S, Fricke B, Miller T, Snyder K, J. Power Sources, 168(1), 2 (2007)
  9. Burke A, J. Power Sources, 91(1), 37 (2000)
  10. Frackowiak E, Beguin F, Carbon., 39, 937 (2001)
  11. Kim JI, Park SJ, J. Solid State Chem., 184, 2184 (2011)
  12. Yoo HM, Heo GY, Park SJ, Carbon Lett., 12, 252 (2011)
  13. Jiang J, Gao Q, Xia K, Hu J, Micropor. Mesopor. Mater., 118, 28 (2009)
  14. Huang CW, Hsu CH, Kuo PL, Hsieh CT, Teng H, Carbon., 49, 895 (2011)
  15. Balathanigaimani MS, Shim WG, Lee MJ, Kim C, Lee JW, Moon H, Electrochem. Commun., 10, 868 (2008)
  16. Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu ZH, Lu GQ, J. Power Sources, 195(3), 912 (2010)
  17. Jurewicz K, Pietrzak R, Nowicki P, Wachowsk H, Electrochim. Acta, 53(16), 5469 (2008)
  18. Burke A, Electrochim. Acta., 53, 1083 (2008)
  19. Kim BJ, Lee YSE, Park SJ, J. Colloid Interface Sci., 318(2), 530 (2008)
  20. Park SJ, Park JM, Seo MK, J. Colloid Interface Sci., 337(1), 300 (2009)
  21. Meng LY, Park SJ, J. Colloid Interface Sci., 352(2), 498 (2010)
  22. Jung MJ, Kim JW, Im JS, Park SJ, Lee YS, J. Ind. Eng. Chem., 15(3), 410 (2009)
  23. Kim BJ, Park SJ, Polym.(Korea), 35(1), 35 (2011)
  24. Okada K, Yamamoto N, Kameshima Y, Yasumori A, J. Colloid Interface Sci., 262(1), 179 (2003)
  25. Aida T, Murayama I, Yamada K, Morita M, J. Power Sources, 166(2), 462 (2007)
  26. Hayashi J, Horikawa T, Takeda I, Muroyama K, Ani FN, Carbon., 40, 2381 (2002)
  27. Xu B, Chen YF, Wei G, Cao GP, Zhang H, Yang YS, Mater. Chem. Phys., 124(1), 504 (2010)
  28. Yorgun S, Vural N, Demiral H, Micropor. Mesopor. Mater., 122, 189 (2009)
  29. Li KQ, Zheng Z, Li Y, J. Hazard. Mater., 181(1-3), 440 (2010)
  30. Kim BJ, Seo MK, Choi KE, Park SJ, J. Ind. Eng.Chem., 22, 167 (2011)
  31. Yoo HM, Lee SY, Kim BJ, Park SJ, Carbon Lett., 12, 112 (2011)
  32. Kim YH, Kim IJ, Min BG, Park SJ, Res. Chem. Intermed., 36, 703 (2010)
  33. Xia K, Gao Q, Jiang J, Hu J, Carbon., 46, 1718 (2008)