화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.30, No.1, 213-220, January, 2013
Correlation of density for binary mixtures of methanol+ionic liquids using back propagation artificial neural network
E-mail:
Ionic liquids (ILs) are amazing fluids introduced as a replacement for conventional solvents due to their unique properties. Unfortunately, they have several unfavorable features such as high viscosity, which makes pumping them difficult on industrial scale. In this regard, several researchers mix the ionic liquids with each other or some conventional solvents, organic and inorganic compounds, to eliminate those unfavorable features. So the binary properties of the ILs mixtures have been increasingly measured and correlated through the past years. One of the most widely used solvents and additives in the different chemical industries is methanol. In the present investigation, the capability of artificial neural networks for correlating the binary density of the ILs systems containing methanol as a common part (total of 426 experimental data points) has been examined. The results revealed that the best network architecture obtained in this study was feasible to correlate the binary densities of the ILs mixtures with average absolute relative deviation percent (AARD%), average relative deviation percent (ARD%) and correlation coefficient (R2) values of 0.85%, -0.05 and 0.9948, respectively.
  1. Balducci A, Soavi F, Mastragostino M, Appl. Phys. A: Mater.Sci. Process., 82, 627 (2006)
  2. Van Valkenburg ME, Vaughn RL, Williams M, Wilkes JS, Thermochim. Acta, 425(1-2), 181 (2005)
  3. Welton T, Chem. Rev., 99(8), 2071 (1999)
  4. Dupont J, de Souza RF, Suarez PAZ, Chem. Rev., 102(10), 3667 (2002)
  5. Wilkes JS, Ionic Liquids in Perspective: The Past with an Eye toward the Industrial Future. In Ionic Liquids: Industrial Applications for Green Chemistry; Rogers D, Seddon KR, Eds.; ACS Symposium Series 818; American Chemical Society: Washington, DC, 214 (2002)
  6. Schroer K, Tacha E, Lutz S, Org. Process Res. Dev., 11, 836 (2007)
  7. Farag HK, Endres F, J. Mater. Chem., 18, 442 (2008)
  8. Birbilis N, Howlett PC, MacFarlane DR, Forsyth M, Surf.Coat. Technol., 201, 4496 (2007)
  9. Fukushima T, Aida T, Chem. Eur. J., 13, 5048 (2007)
  10. Docherty KM, Kulpa CF, Green Chem., 7, 185 (2005)
  11. Bernot RJ, Brueseke MA, Evans-White MA, Lamberti GA, Environ. Toxicol. Chem., 24, 87 (2005)
  12. Swatloski RP, Holbrey JD, Memon SB, Caldwell GA, Caldwell KA, Rogers RD, Chem. Commun., 668 (2004)
  13. Swatloski RP, Holbrey JD, Rogers RD, Green Chem., 5, 361 (2003)
  14. Qian W, Xu Y, Zh H, Yu C, J. Chem. Thermodyn., 49, 87 (2012)
  15. Mokhtarani B, Sharifi A, Mortaheb HR, Mirzaei M, Mafi M, Sadeghian F, J. Chem. Thermodyn., 41(3), 323 (2009)
  16. Gomez E, Gonzalez B, Calvar N, Tojo E, Dominguez A, J. Chem. Eng. Data, 51(6), 2096 (2006)
  17. Lehmann J, Rausch MH, Leipertz A, Froba AP, J. Chem. Eng. Data, 55(9), 4068 (2010)
  18. Wang ZX, Fu L, Xu H, Shang Y, Zhang L, Zhang JM, J. Chem. Eng. Data, 57(4), 1057 (2012)
  19. Yu Z, Gao H, Wang H, Chen L, J. Sol. Chem., 41(1), 173 (2012)
  20. Davis E, Ierapetritou M, AIChE J., 53(8), 2001 (2007)
  21. Oliver MA, Webster R, INT. J. Geographical Information Systems., 4(3), 313 (1990)
  22. Moody J, Darken CJ, Neural Compu., 1, 281 (1989)
  23. http://www.learnartificialneuralnetworks.com/.
  24. Lazzus JA, J. Taiwan Inst. Chem. Eng., 40, 213 (2009)
  25. Torrecilla JS, Rodriguez F, Bravo JL, Rothenberg G, Seddon KR, Lopez-Martin I, Phys. Chem. Chem. Phys., 14, 5826 (2008)
  26. Bini R, Chiappe C, Duce C, Micheli A, Solaro R, Starita A, Tine MR, Green Chem., 10, 306 (2008)
  27. Lashkarbolooki M, Hezave AZ, Ayatollahi S, Fluid Phase Equilib., 324(25), 128 (2012)
  28. Hezave AZ, Lashkarbolooki M, Raeissi S, Fluid Phase Equilib., 314, 128 (2012)
  29. Lashkarbolooki M, Hezave AZ, Al-Ajmi AM, Ayatollahi S, Fluid Phase Equilib., 326(25), 15 (2012)
  30. Hezave AZ, Lashkarbolooki M, Raeissi S, Ind. Eng. Chem.Res., In Press (2012)
  31. Miao Y, Gan Q, Rooney D, IEEE., 668 (2010)
  32. IUPAC Ionic Liquids Database-(ILThermo), NIST Standard Reference Database.
  33. Watanabe K, Matsuura L, Abe M, Kubota M, AIChE J., 35, 1803 (1989)
  34. http://www.emilstefanov.net/Projects/NeuralNetworks.aspx.
  35. Sozen A, Arcaklioglu E, Menlik T, Ozalp M, Expert Syst.Appl., 36, 4346 (2009)
  36. Sozen A, Ozalp M, Arcaklioglu E, Chem. Eng. Process., 43(10), 1253 (2004)
  37. Eslamloueyan R, Khademi MH, Chemometr. Intell. Lab., 104, 195 (2010)
  38. Eslamloueyan R, Khademi MH, Int. J. Therm. Sci., 48, 1094 (2009)
  39. Lashkarbolooki M, Hezave AZ, Ayatollahi S, Fluid Phase Equilib., In Press
  40. Laugier S, Richon D, Fluid Phase Equilib., 210(2), 247 (2003)
  41. Eslamloueyan R, Khademi MH, J. Chem. Eng. Data, 54(3), 922 (2009)
  42. Boozarjomehry RB, Abdolahi F, Moosavian MA, Fluid Phase Equilib., 231(2), 188 (2005)
  43. Werbos PJ, Back-propagation: Past and Future, Proc. 1988 IEEE International Conference on Neural Neiworks, IEEE Press, New York (1988)
  44. Werbos PJ, Building and Understanding Adaptive Systems: A Statistical/Numerical Approach to Factory Automation and brain Research, IEEE Trans. On Systems, Man and Cyber. SMC-17, No. 1, 7-20, January/February (1987)
  45. Bryson AE, Ho YC, Applied optimal control, Blaisdell, New York (1969)
  46. Werbos PJ, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences, Ph. D Thesis, Applied Mathematics, Harvard University, November (1974)
  47. Parker DB, Learning-Logic, Technical Report TR-47, Center for Computational Research in Economics and Managernent Science, MIT, April (1985)
  48. Parker DB, Optimal algorithms for adaptive networks: Second order back propagation, Second order direct propagation, and second order hebbian learning, Proc. 1987 IEEE International Conference on Neural Networks, II (593-600), IEEE Press, New York (1987)
  49. Anderson JA, Ftosenfeld E, [Eds.], Neurocomputing: Foundations of Research, MIT Press, Cambridge, Massachusetts (1988)
  50. Rumelhart DE, Hinton GE, William RJ, Nature., 323, 533 (1986)
  51. Gallant SI, Neural Network Learning and Expert Systems, MIT Press, Cambridge (1993)
  52. Cybenko GV, Math. Contr. Signals Syst., 2, 303 (1989)
  53. Zafarani-Moattar MT, Shekaari H, J. Chem. Eng. Data, 50(5), 1694 (2005)
  54. Zafarani-Moattar MT, Shekaari H, J. Chem. Thermodyn., 38(11), 1377 (2006)
  55. Iglesias-Otero MA, Troncoso J, Carballo E, J. Solution Chem., 36, 1219 (2007)
  56. Stoppa A, Hunger J, Buchner R, J. Chem. Eng. Data, 54(2), 472 (2009)
  57. Arce A, Rodriguez W, Soto A, Fluid Phase Equilib., 242(2), 164 (2006)
  58. Guo XZ, Wang LS, Tian NN, J. Chem. Eng. Data, 55(4), 1745 (2010)
  59. Gonzalez EJ, Alonso L, Dominguez A, J. Chem. Eng. Data, 51(4), 1446 (2006)
  60. Vercher E, Orchilles AV, Miguel PJ, Martinez-Andreu A, J. Chem. Eng. Data, 52(4), 1468 (2007)
  61. Domanska U, Pobudkowska A, Wisniewska A, J. Solution Chem., 35(3), 311 (2006)
  62. Hagan MT, Demuth HB, Beale MH, Neural Network Design, International Thomson Publishing: Boston (2002)
  63. Cooper EI, O’Sullivan EJM, New, Stable, Ambient-Temperature Molten Salts, in Gale RJ, Blomgren G & Kojima H, Proceedings of the Eighth International Symposium on Molten Salts, The Electrochemical Society, Inc., Pennington, NJ, PV, 92-16 (1992)
  64. Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M, Inorg. Chem., 35(5), 1168 (1996)
  65. Berthod A, Ruiz-Angel MJ, Carda-Broch S, J. Chromatogr.A., 1184, 6 (2008)
  66. Sheldon R, Catalytic reactions in ionic liquids, Chem. Commun., 2399 (2011)
  67. Lee SH, Lee SB, Chem. Commun., 3469 (2005)