1 - 9 |
Structure of the macromolecular solutions that generate crystals Tardieu A, Finet S, Bonnete F |
10 - 16 |
A new approach to the measurement of protein solubility by Michaelson interferometry Gray RJ, Hou WB, Kudryavtsev AB, DeLucas LJ |
17 - 20 |
A novel spin filter method for the measurement of solubility Haire LF, Blow DM |
21 - 29 |
Temperature-independent solubility and interactions between apoferritin monomers and dimers in solution Petsev DN, Thomas BR, Yau ST, Tsekova D, Nanev C, Wilson WW, Vekilov PG |
30 - 39 |
The liquid protein phase in crystallization: a case study - intact immunoglobulins Kuznetsov YG, Malkin AJ, McPherson A |
40 - 49 |
alpha-crystallin interaction forces studied by small angle X-ray scattering and numerical simulations Finet S, Tardieu A |
50 - 62 |
Theory of the effect of pH and ionic strength on the nucleation of protein crystals Baird JK, Scott SC, Kim YW |
63 - 76 |
Nucleation of protein crystals: critical nuclei, phase behavior, and control pathways Galkin O, Vekilov PG |
77 - 85 |
Dependence of nucleation kinetics and crystal morphology of a model protein system on ionic strength Bhamidi V, Skrzypczak-Jankun E, Schall CA |
86 - 92 |
A spectrophotometer-based method for crystallization induction time period measurement Hu HQ, Hale T, Yang XY, Wilson LJ |
93 - 101 |
Observation of the early stage of insulin crystallization by confocal laser scanning microscopy Muhlig P, Klupsch T, Schell U, Hilgenfeld R |
102 - 113 |
Understanding the crystallisation of an acidic protein by dilution in the ternary NaCl-2-methyl-2,4-pentanediol-H2O system Costenaro L, Zaccai G, Ebel C |
114 - 118 |
The influence of precipitant concentration on macromolecular crystal growth mechanisms Kuznetsov YG, Malkin AJ, McPherson A |
119 - 131 |
A dynamic light scattering investigation of the nucleation and growth of thaumatin crystals Juarez-Martinez G, Garza C, Castillo R, Moreno A |
132 - 137 |
Magnetic suppression of convection in protein crystal growth processes Qi JW, Wakayama NI, Ataka M |
138 - 148 |
Numerical simulation of FID hydrodynamics of protein crystallization Castagnolo D, Carotenuto L, Vergara A, Paduano L, Sartorio R |
149 - 155 |
A supersaturation wave of protein crystallization Garcia-Ruiz JM, Otalora F, Novella ML, Gavira JA, Sauter C, Vidal O |
156 - 164 |
Depletion interactions and protein crystallization Kulkarni A, Zukoski C |
165 - 172 |
Agarose as crystallization media for proteins I: Transport processes Garcia-Ruiz JM, Novella ML, Moreno R, Gavira JA |
173 - 183 |
Viral capsomere structure, surface processes and growth kinetics in the crystallization of macromolecular crystals visualized by in situ atomic force microscopy Malkin AJ, Kuznetsov YG, McPherson A |
184 - 187 |
Visualization of the impurity depletion zone surrounding apoferritin crystals growing in gel with holoferritin dimer impurity Chernov AA, Garcia-Ruiz JM, Thomas BR |
188 - 194 |
Real time, in-situ, monitoring of apoferritin crystallization and defect formation with molecular resolution Yau ST, Thomas BR, Vekilov PG |
195 - 203 |
A patch-antipatch representation of specific protein interactions Hloucha M, Lodge JFM, Lenhoff AM, Sandler SI |
204 - 214 |
Interconversion of different crystal forms of Fabs from human IgM cryoglobulins Ramsland PA, Upshaw JL, Shultz BB, DeWitt CR, Chissoe WF, Raison RL, Edmundson AB |
215 - 220 |
Protein packing interactions and polymorphy of chorismate lyase from E-Coli Gallagher T |
221 - 228 |
Improvements in lysozyme crystal quality via temperature-controlled growth at low ionic strength Jones WF, Wiencek JM, Darcy PA |
229 - 236 |
Improvement in diffraction maxima in orthorhombic HEWL crystal grown under high magnetic field Sato T, Yamada Y, Saijo S, Hori T, Hirose R, Tanaka N, Sazaki G, Nakajima K, Igarashi N, Tanaka M, Matsuura Y |
237 - 243 |
Acetylated lysozyme as impurity in lysozyme crystals: constant distribution coefficient Thomas BR, Chernov AA |
244 - 249 |
Effect of the substitution of light by heavy water on lysozyme KCl and NaNO3 solubility Legrand L, Rosenman I, Boue F, Robert MC |
250 - 255 |
Equilibrium kinetics of lysozyme crystallization under an external electric field Taleb M, Didierjean C, Jelsch C, Mangeot JP, Aubry A |
256 - 261 |
Lysozyme diffusion adjacent to the (110) crystal surface Gorti S, Zuk WM, Konnert J, Ward K, Tanaka T, Yang H |
262 - 264 |
Is lysozyme really the ideal model protein? Chayen NE, Saridakis E |
265 - 272 |
Real time evolution of concentration distribution around tetragonal lysozyme crystal: case study in gel and free solution Hou WB, Kudryavtsev AB, Bray TL, DeLucas LJ, Wilson WW |
273 - 284 |
Precision measurement of ternary diffusion coefficients and implications for protein crystal growth: lysozyme chloride in aqueous ammonium chloride at 25 degrees C Paduano L, Annunziata O, Pearlstein AJ, Miller DG, Albright JG |
285 - 293 |
Nucleation of lysozyme crystals under external electric and ultrasonic fields Nanev CN, Penkova A |
294 - 300 |
Electrophoretic mobility and zeta-potential of lysozyme crystals in aqueous solutions of some 1 : 1 electrolytes Lee HM, Kim YW, Baird JK |
301 - 307 |
The effect of solution thermal history on chicken egg white lysozyme nucleation Burke MW, Judge RA, Pusey ML |
308 - 316 |
Preparation and preliminary characterization of crystallizing fluorescent derivatives of chicken egg white lysozyme Sumida JP, Forsythe EL, Pusey ML |
317 - 325 |
Neutron structure of monoclinic lysozyme crystals produced in microgravity Ho JX, Declercq JP, Myles DAA, Wright BS, Ruble JR, Carter DC |
326 - 329 |
Crystallization of human CCGl-interacting factor B (CIB) Padmanabhan B, Kuzuhara T, Horikoshi M |
330 - 339 |
Interactions in solution and crystallization of Aspergillus flavus urate oxidase Bonnete F, Vivares D, Robert C, Colloc'h N |
340 - 352 |
Crystallization and X-ray diffraction data of Thermus flavus 5S rRNA helices Vallazza M, Senge A, Lippmann C, Perbandt M, Betzel C, Bald R, Erdmann VA |
353 - 360 |
Crystallization, preliminary X-ray analysis and amino acid sequence studies of an "external" functional unit from the Rapana thomasiana grosse (mollusc, gastropod) hemocyanin Perbandt M, Chandra V, Idakieva K, Parvanova K, Rypniewski W, Stoeva S, Voelter W, Genov N, Betzel C |
361 - 367 |
Tackling both the player and the ball: lessons from crystallographic studies on the N-utilization substance B (NusB) from Mycobacterium tuberculosis Haire LF, Gopal B |
368 - 375 |
Are protein crystallization mechanisms relevant to understanding and control of polymerization of deoxyhemoglobin S? Serrano MD, Galkin O, Yau ST, Thomas BR, Nagel RL, Hirsch RE, Vekilov PG |
376 - 386 |
Packing contacts in orthorhombic and monoclinic crystals of a thermophilic aspartyl-tRNA synthetase favor the hydrophobic regions of the protein Charron C, Sauter C, Zhu DW, Ng JD, Kern D, Lorber B, Giege R |
387 - 398 |
Effect of a mutation at arginine 301 on the stability, crystal quality and the preliminary crystallographic analysis of recombinant canavalin from Canavalia ensiformis Green ME, Kirkland N, Ng JD |
399 - 408 |
Crystallogenesis in tRNA aminoacylation systems: how packing accounts for crystallization drawbacks with yeast aspartyl-tRNA synthetase Sauter C, Lorber B, Theobald-Dietrich A, Giege R |
409 - 417 |
Crystallization of bFGF-DNA aptamer complexes using a Sparse Matrix designed for protein-nucleic acid complexes Cannone JJ, Barnes CL, Achari A, Kundrot CE |
418 - 420 |
Purification and crystallization of alpha-amylases from mucoid and non-mucoid B-amyloliquefaciens strains Sarikaya E, Mikami B |
421 - 425 |
A structural genomics pilot project based on gene targets selected from Escherichia coli Sivaraman J, Li YG, Plamondon J, Larocque R, Raymond S, Sauve V, Smith C, Boju L, Schrag J, Matte A, Gaasterland T, Cygler M |
426 - 431 |
The development of membrane protein crystallization screens based upon detergent solution properties Wiener MC, Snook CF |
432 - 438 |
Assessing the role of detergent-detergent interactions in membrane protein crystallization Loll PJ, Allaman M, Wiencek J |
439 - 449 |
The protein crystallisation diagnostics facility: status of the ESA programme on the fundamentals of protein crystal growth Pletser V, Minster O, Bosch R, Potthast L, Stapelmann J |
450 - 457 |
Canada's space protein crystal growth program prepares for ISS Berinstain A, Gregory P, Herring R |
458 - 467 |
The international space station X-ray crystallography facility Crysel WB, DeLucas LJ, Weise LD, Smith CD, McDonald WT |
468 - 472 |
Towards protein crystal growth on the International Space Station (ISS) - innovative tools, diagnostics and applications Stapelmann J, Smolik G, Lautenschlager P, Lork W, Pletser V |
473 - 480 |
Influence of gravity on post-nucleation transport in liquid/liquid diffusion chamber of protein crystallization Cang HX, Bi RC |
481 - 488 |
Video observation of protein crystal growth in the advanced protein crystallization facility aboard the space shuttle mission STS-95 Carotenuto L, Berisio R, Piccolo C, Vitagliano L, Zagari A |
489 - 497 |
Influence of impurities on protein crystal perfection Robert MC, Capelle B, Lorber B, Giege R |
498 - 501 |
Measuring the elastic properties of protein crystals by brillouin scattering Caylor CL, Speziale S, Kriminski S, Duffy T, Zha CS, Thorne RE |
502 - 510 |
A high resolution triple axis X-ray diffraction analysis of radiation damage in lysozyme crystals Volz HM, Matyi RJ |
511 - 519 |
A preliminary study of space- and ground-grown insulin crystals by X-ray diffraction and by light scattering tomography De Mattei RC, Feigelson RS, Bray TL, DeLucas LJ, Symersky J |
520 - 535 |
Mosaic spread analysis of Canadian advanced protein crystallization experiment on the Russian space station, Mir Yoon TS, Tetreault S, Bosshard HE, Sweet RM, Sygusch J |
536 - 544 |
Macromolecular data collection with cryogenic helium Hanson BL, Harp JM, Kirschbaum K, Parrish DA, Timm DE, Howard A, Pinkerton AA, Bunick GJ |
545 - 552 |
A simple modification of the Q-plate for parallel screening and combinatorial crystallization Stura EA |
553 - 562 |
Efficiency analysis of sampling protocols used in protein crystallization screening Segelke BW |
563 - 572 |
Etray: a program for efficient design and recording of crystallization trials Elkin CD, Hogle JM |
573 - 579 |
Crystallization of macromolecular complexes: Combinatorial complex crystallization Stura EA, Graille M, Charbonnier JB |
580 - 590 |
Crystallization of macromolecular complexes: stoichiometric variation screening Stura EA, Graille M, Taussig MJ, Sutton B, Gore MG, Silverman GJ, Charbonnier JB |
591 - 595 |
Macromolecular crystallization in a high throughput laboratory-the search phase Luft JR, Wolfley J, Jurisica I, Glasgow J, Fortier S, DeTitta GT |
596 - 602 |
Crystallization screening directly in electrophoresis gels Garcia-Ruiz JM, Hernandez-Hernandez A, Lopez-Jaramillo J, Thomas B |
603 - 609 |
Intrinsic fluorescence as a potential rapid scoring tool for protein crystals Asanov AN, McDonald HM, Oldham PB, Jedrzejas MJ, Wilson WW |
610 - 617 |
Altering the morphology of crystals of a macromolecule without changing the unit cell - (A case study of ribosome crystals) Karpova EA, Tarahovsky YS |
618 - 628 |
Surface-potential controlled Si-microarray devices for heterogeneous protein crystallization screening Sanjoh A, Tsukihara T, Gorti S |
629 - 637 |
Crystal annealing - nothing to lose Stevenson CEM, Mayer SM, Delarbre L, Lawson DM |
VII - VII |
ICCBM-8 - Proceedings of the Eighth International Conference on Crystallization of Biological Macromolecules Sandestin, Florida, 14-19 May 2000 - Preface DeTitta GT |