Macromolecular Research, Vol.21, No.8, 905-910, August, 2013
Effects of hybrid fillers on the electrical conductivity and EMI shielding efficiency of polypropylene/conductive filler composites
E-mail:
In this study, the effects of hybrid fillers on the electrical conductivity and electromagnetic interference shielding efficiency (EMI SE) of the polypropylene (PP)/Ni-coated carbon fiber (NCCF) composites with the second fillers, such as multi-walled carbon nanotube (MWCNT), carbon black and TiO2, were investigated. The morphological behavior showed that the NCCF and the second fillers, such as MWCNT, carbon black and TiO2, seemed to disperse evenly in the PP phase. Among the PP/NCCF composites with MWCNT, carbon black and TiO2, the PP/NCCF/TiO2 composites showed the higher electrical conductivity and EMI SE compared with those of the PP/NCCF/MWCNT and PP/NCCF/carbon black composites. This was the case because TiO2 has high dielectric constant with dominant dipolar polarization. The estimated EMI SE values of the PP/NCCF composites with MWCNT, carbon black and TiO2 are in good agreement with the experimentally obtained values of the composites. Based on the electrical properties of the composites, it was suggested that TiO2 was the most effective second filler when it was hybridized with the NCCF of the PP/NCCF/TiO2 composite. Based on the analysis of the flexural modulus, the PP/NCCF/MWCNT composite had a higher flexural modulus than the PP/NCCF/TiO2 and PP/NCCF/carbon black composites because of the higher aspect ratio of the MWCNT.
Keywords:polymer composite;electrical conductivity;electromagnetic interference shielding;efficiency (EMI SE);carbon nanotube;carbon fiber
- Zhou Z, Wang SF, Zhang Y, Zhang YX, J. Appl. Polym. Sci., 102(5), 4823 (2006)
- Lee SH, Cho E, Jeon SH, Youn JR, Carbon, 45, 2810 (2007)
- Zheming G, Chunzhong L, Gengchao W, Ling Z, Qilin C, Xiaohui L, Wendong W, Shilei J, J. Ind. Eng. Chem., 16(1), 10 (2010)
- Ma PC, Liu MY, Zhang H, Wang SQ, Wang R, Wang K, Wong YK, Tang BZ, Hong SH, Paik KW, Kim JK, ACS Appl. Mater. Interfaces, 1, 1090 (2009)
- Lee YK, Jang SH, Kim MS, Kim WN, Yoon HG, Park SD, Kim ST, Lee JD, Macromol. Res., 18(3), 241 (2010)
- Yang Y, Gupta MC, Dudley KL, Lawrence RW, Nano Lett., 5, 2131 (2005)
- Kim HM, Kim K, Lee CY, Joo J, Cho SJ, Yoon HS, Appl. Phys. Lett., 84, 589 (2004)
- Fang FF, Choi HJ, Colloid Polym. Sci., 288, 79 (2010)
- Chae DW, Hong SM, Macromol. Res., 19(4), 326 (2011)
- Yun YS, Bak H, Jin HJ, Synth. Met., 160, 561 (2010)
- Han MS, Lee YK, Yun CH, Lee HS, Lee CJ, Kim WN, Synth. Met., 161, 1629 (2011)
- Kim YH, Kim DH, Kim JM, Kim SH, Kim WN, Lee HS, Macromol. Res., 17(2), 110 (2009)
- Sung YT, Han MS, Song KH, Jung JW, Lee HS, Kum CK, Joo J, Kim WN, Polymer, 47(12), 4434 (2006)
- Rahaman M, Chaki TK, Khastgir D, J. Mater. Sci., 46(11), 3989 (2011)
- Han MS, Lee YK, Kim WN, Lee HS, Joo JS, Park M, Lee HJ, Park CR, Macromol. Res., 17(11), 863 (2009)
- Han MS, Lee YK, Lee HS, Yun CH, Kim WN, Chem. Eng. Sci., 64(22), 4649 (2009)
- Ha H, Kim SC, Ha K, Macromol. Res., 18(7), 660 (2010)
- Shim YS, Min BG, Park SJ, Macromol. Res., 20(5), 540 (2012)
- Hong J, Park DW, Shim SE, Macromol. Res., 20(5), 465 (2012)
- Li W, Liu L, Shen B, Wu Y, Hu W, Macromol. Res., 20(4), 366 (2012)
- Oh SM, Lee H, Jeong HM, Kim BK, Macromol. Res., 19(4), 379 (2011)
- Chen SC, Chien RD, Lee PH, Huang JS, J. Appl. Polym. Sci., 98(3), 1072 (2005)
- Joo JS, Lee CY, J. Appl. Phys., 88, 513 (2000)
- Bigg DM, Stutz DE, Polym. Compos., 4, 40 (1983)
- White DRJ, in EMI/EMC Handbook Series, Don White Consultants, Inc., Warrenton, 1971, Vol. 4.
- Ryu Y, Yin L, Yu C, J. Mater. Chem., 22, 6959 (2012)
- Thongruang W, Spontak RJ, Balik CM, Polymer, 43(8), 2279 (2002)
- Dhawan SK, Singh K, Bakhshi AK, Ohlan A, Synth. Met., 159, 2259 (2009)
- Colaneri NF, Shacklette LW, IEEE Trans. Instrum. Meas., 41, 921 (1992)