Journal of Industrial and Engineering Chemistry, Vol.19, No.6, 1793-1799, November, 2013
NO reduction over nanostructure M-Cu/ZSM-5 (M: Cr, Mn, Co and Fe) bimetallic catalysts and optimization of catalyst preparation by RSM
E-mail:
The selective catalytic reduction (SCR) of NO with NH3 in the presence of oxygen over a series of H-ZSM-5 supported transition metal oxides (Co, Mn, Cr, Cu and Fe) was investigated. Among them, Cu/ZSM-5 nanocatalyst was found to be the most promising catalyst based on activity. The modification of Cu/ZSM-5 by adding different transition metals (Co, Mn, Cr and Fe) to improve the efficiency of NO conversion was studied. The results indicated that the Fe-Cu/ZSM-5 bimetallic nanocatalyst was the highest active catalyst for NO conversion (67% at 250 ℃ and 93% at 300 ℃). Response surface methodology (RSM) involving central composite design (CCD) was employed to evaluate and optimize Fe-Cu/ZSM-5 preparation parameters (Fe loading, calcinations temperature, and impregnation temperature) in SCR of NO at 250 ℃. The optimum condition for maximum NO conversion was estimated at 4.2 wt.% Fe loading, calcinations temperature of 577 ℃ and impregnation temperature of 43.5 ℃. Under these condition, experimental NO conversion efficiency was 78.8%, which was close with the predicted value (79.4%).
- Acres GJK, Harrison B, Topics in Catalysis., 28, 141 (2004)
- Fritz A, Pitchon V, Appl. Catal. B: Environ., 13(1), 1 (1997)
- Teng H, Tu YT, Lai YC, Lin CC, Carbon., 39, 575 (2001)
- Severino F, Brito JL, Laine J, Fierro JLG, Agudo AL, J. Catal., 177(1), 82 (1998)
- Liu ZM, Woo SI, Catal. Rev.-Sci. Eng., 48(1), 43 (2006)
- Busca G, Lietti L, Ramis G, Berti F, Appl. Catal. B: Environ., 18(1-2), 1 (1998)
- Dunn JP, Koppula PR, Stenger HG, Wachs IE, Appl. Catal. B: Environ., 19(2), 103 (1998)
- Balle P, Geiger B, Kureti S, Appl. Catal. B: Environ., 85(3-4), 109 (2009)
- Delahay G, Mauvezin M, Coq B, Kieger S, J. Catal., 202(1), 156 (2001)
- Pieterse JAZ, Booneveld S, Appl. Catal. B: Environ., 73(3-4), 327 (2007)
- Chen HY, Wang X, Sachtler WMH, Applied Catalysis A: General., 159, 194 (2000)
- Kieger S, Delahay G, Coq B, Appl. Catal. B: Environ., 25(1), 1 (2000)
- Theis JR, Dearth M, McCabe R, SAE Paper 2011-01-0305 (2011)
- Xu Q, He D, Fujiwara M, Souma Y, Journal of Molecular Catalysis A: Chemical., 120, 23 (1997)
- Obuchi A, Kaneko I, Uchisawa J, Ohi A, Ogata A, Bamwenda GR, Kushiyama S, Appl. Catal. B: Environ., 19(2), 127 (1998)
- Tseng HH, Lin HY, Kuo YF, Su YT, Chem. Eng. J., 160(1), 13 (2010)
- Carja G, Kameshima Y, Okada K, Madhusoodana CD, Appl. Catal. B: Environ., 73(1-2), 60 (2007)
- Myers RH, Montgomery DC, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, USA (2002)
- Rosales E, Sanroman MA, Pazos M, Environmental Science and Pollution Research., 18, 145 (2011)
- Jodaei A, Niaei A, Salari D, Korean J. Chem. Eng., 28(8), 1665 (2011)
- Zarei M, Salari D, Niaei A, Khataee A, Electrochim. Acta, 54(26), 6651 (2009)
- Rajkumar K, Muthukumar M, Environmental Science and Pollution Research., 19, 148 (2012)
- Gholami RM, Mousavi SM, Borghei SM, J. Ind. Eng. Chem., 18(1), 218 (2012)
- Korbahti BK, Aktas N, Tanyolac A, J. Hazard. Mater., 148(1-2), 83 (2007)
- Khuri AI, Cornell J, A response surface: design and analysis, Dekker, New York (1987)
- Sultana A, Nanba T, Haneda M, Hamada H, Catalysis Communications., 10, 1859 (2009)
- Gluhoi AC, Nieutwenhuys BE, Catal. Today, 119(1-4), 305 (2007)
- Devulapelli VG, Sahle-Demessie E, Appl. Catal. A: Gen., 348(1), 86 (2008)
- Profeti LPR, Ticianelli EA, Assaf EM, Fuel, 87(10-11), 2076 (2008)
- Haaland DP, Experimental Design in Biotechnology, Marcel Dekker Inc., New York, Basel (1989)
- Jodaei A, Salari D, Niaei A, Khatamian M, C¸aylak N, Environmental Technology., 32, 395 (2011)
- Salari D, Niaei A, Aghazadeh F, Jodaei A, Hosseini SA, Seyednajafi F, Journal of Environmental Science and Health Part A., 47, 1 (2012)