화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.24, No.6, 579-586, December, 2013
바이오매스 자원을 활용한 바이오폴리올, 바이오이소시아네이트 및 바이오폴리우레탄 제조
Production of Biopolyols, Bioisocyanates and Biopolyurethanes from Renewable Biomass
E-mail:
초록
화석 연료의 고갈 및 온실가스 배출문제로 인해 보다 환경 친화적인 바이오매스 유래의 고분자 생산에 대한 연구가 진행되고 있다. 폴리우레탄은 -OH 화합물과 -NCO 화합물의 중합반응에 의해 생성된 우레탄(-NHCOO-) 결합을 포함하는 고분자 화합물을 통칭하며 자동차, 건축, 화학 분야에서 가장 광범위하게 사용된다. 폴리우레탄의 원료인 폴리올과 이소시아네이트는 식물성 천연유지, 셀룰로오스, 리그닌 등 재생 가능한 바이오매스로부터 생산이 가능하다. 식물성 천연유지 유래의 바이오폴리올은 이미 상업적 규모로 생산되고 있다. 본 총설은 다양한 바이오매스로부터 바이오폴리올, 바이오이소시아네이트, 이소시아네이트 대체화합물 관련 최신 기술개발 동향 및 이를 기반으로 합성된 바이오폴리우레탄의 특성을 평가하고, 바이오폴리우레탄의 응용분야와 함께 전망을 분석하였다.
The shortage of fossil fuel and problem of greenhouse gas exhaustion drive the production of biopolymer in a environment-friendly manner. Polyurethane is a polymer formed by reacting an isocyanate (-NCO) with a polyol (-OH) to form urethane link (-NHCOO-). Polyurethane is one of the most widely used polymers in automobile, construction and chemical industries. Two monomers for the polymerization of polyurethane, polyols and isocyanates, can be produced from renewable biomass such as plant oil, cellulose, lignin and etc. Biopolyol production from plant oil has already been implemented in commercial-scale production. In this paper, recent progresses on bio-based approaches on the production of biopolyols, bioisocyanates and bio-substituent or isocyanate from bio-feedstock are reviewed alongside polymerization and characterization of biopolyurethane for industrial applications.
  1. Saxena RC, Adhikari DK, Goyal HB, Renew. Sust.Energ. Rev., 13, 167 (2009)
  2. Demirbas A, Energy Edu. Sci. Technol., 17, 27 (2006)
  3. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D, PNAS., 103, 11206 (2006)
  4. Gouveia L, Oliveira AC, J. Ind. Microbiol. Biotechnol., 36, 269 (2009)
  5. Wettstein SG, Alonso DM, Gurbuz EI, Dumesic JA, Curr. Opin. Chem. Eng., 1, 218 (2012)
  6. Mohanty AK, Misra M, Hinrichsen G, Macromol. Mater. Eng., 276/277, 1 (2000)
  7. Pfister DP, Xia Y, Larock RC, Chem. Sus. Chem., 4, 703 (2011)
  8. Huang J, Zhang L, Wei H, Cao XD, J. Appl. Polym. Sci., 93(2), 624 (2004)
  9. Lee SH, Wang S, Compos. Pt. A-Appl. Sci.Manuf., 37, 80 (2006)
  10. Lyon CK, Garrett VH, Goldblatt LA, J. Am. Oil Chem. Soc., 41, 23 (1964)
  11. Guo A, Zhang W, Petrovic ZS, J. Mater. Sci., 15, 4914 (2006)
  12. Hu YH, Gao Y, Wang DN, Hu CP, Zu S, Vanoverloop L, Randall D, J. Appl. Polym. Sci., 84(3), 591 (2002)
  13. Veronese VB, Menger RK, Forte MMD, Petzhold CL, J. Appl. Polym. Sci., 120(1), 530 (2011)
  14. Mosiewicki MA, Dell’arciprete GA, Aranguren MI, Marcovich NE, J. Compos. Mater., 43, 3057 (2009)
  15. Deka H, Karak N, Org. Coat., 66, 192 (2009)
  16. Kaushik A, Singh P, Int. J. Polym. Anal. Charact., 10, 373 (2005)
  17. Bhabhe MD, Athawale VD, J. Appl. Polym. Sci., 69(7), 1451 (1998)
  18. Lee CS, Ooi TL, Chuah CH, Ahmad S, J. Am. Oil Chem. Soc., 84, 1161 (2007)
  19. Guo A, Demydov D, Zhang W, Petrovic ZS, J. Polym. Environ., 10, 49 (2002)
  20. Petrovic ZS, Zhang W, Javni I, Biomacromolecules, 6(2), 713 (2005)
  21. Shiraishi N, Onodera S, Ohtani M, Masumoto T, Mokuzai Gakkaishi., 31, 418 (1985)
  22. Pu S, Shiraishi N, Mokuzai Gakkaishi., 39, 446 (1993)
  23. Maldas D, Shiraishi N, Biomass Bioenerg., 12(4), 273 (1997)
  24. Alma MH, Yoshioka M, Yao Y, Shiraishi N, J. Appl. Polym. Sci., 61(4), 675 (1996)
  25. Yamada T, Ono H, Bioresour. Technol., 70(1), 61 (1999)
  26. Mun SP, Hassan EBM, J. Ind. Eng. Chem., 10(3), 473 (2004)
  27. Hassan EM, Mun SP, J. Ind. Eng. Chem., 8(4), 359 (2002)
  28. Yao Y, Yoshioka M, Shiraishi N, Mokuzai Gakkaishi., 41, 659 (1995)
  29. Yao YG, Yoshioka M, Shiraishi N, J. Appl. Polym. Sci., 60(11), 1939 (1996)
  30. Chen FG, Lu ZM, J. Appl. Polym. Sci., 111(1), 508 (2009)
  31. Yu F, Le ZP, Chen P, Liu YH, Lin XY, Ruan R, Appl. Biochem. Biotechnol., 148(1-3), 235 (2008)
  32. Yan YB, Pang H, Yang XX, Zhang RL, Liao B, J. Appl. Polym. Sci., 110(2), 1099 (2008)
  33. Hassan EM, Shukry N, Ind. Crop. Prod., 27, 33 (2008)
  34. Johnson DT, Taconi KA, Environ. Prog., 26, 338 (2007)
  35. Wang Y, Wu J, Wan Y, Lei H, Yu F, Chen P, Lin X, Liu Y, Ruan R, Int. J. Agric. Biol. Eng., 2, 32 (2009)
  36. U.S. Patent, 0,054,059 (2011)
  37. Kumar MNS, Manjula KS, Siddaramaiah, J. Appl. Polym. Sci., 105(6), 3153 (2007)
  38. Zlatanic A, Lava C, Zhang W, Petrovic ZS, J. Polym. Sci. B: Polym. Phys., 42(5), 809 (2004)
  39. Hu SJ, Wan CX, Li YB, Bioresour. Technol., 103(1), 227 (2012)
  40. Cayli G, Kusefoglu S, J. Appl. Polym. Sci., 109(5), 2948 (2008)
  41. Hojabri L, Kong XH, Narine SS, Biomacromolecules, 10(4), 884 (2009)
  42. Hojabri L, Kong XH, Narine SS, J. Polym. Sci. A: Polym. Chem., 48(15), 3302 (2010)
  43. Glasser WG, Hsu OHH, Reed DL, Forte RC, Wu LCF, Lignin-derived polyols, polyisocyanates, Urethane Chemistry and Applications, 172, 311, Kenneth N. Edwards Enterprises, United States (1981)
  44. Palaskar DV, Boyer A, Cloutet E, Alfos C, Cramail H, Biomacromolecules, 11(5), 1202 (2010)
  45. Tamami B, Sohn S, Wilkes GL, J. Appl. Polym. Sci., 92(2), 883 (2004)
  46. Ubaghs L, Fricke N, Keul H, Hocker H, Macromol. Rapid Commun., 25(3), 517 (2004)
  47. Javni I, Petrovic ZS, Guo A, Fuller R, J. Appl. Polym. Sci., 77(8), 1723 (2000)
  48. Petrovic ZS, Cevallos MJ, Javni I, Schaefer DW, Justice R, J. Polym. Sci. B: Polym. Phys., 43(22), 3178 (2005)
  49. Kong XH, Yue J, Narine SS, Biomacromolecules, 8(11), 3584 (2007)
  50. Terheiden A, Hubel R, Scientific approach to the question ‘Why natural oil based polyols affect the physical properties of conventional slabstock foam, Polyurethanes technical conference, American Chemistry Council, 620, American Chemistry Council and Arlington, VA., United States (2010)
  51. Ionescu M, Petrovic ZS, Wan X, J. Polym. Environ., 15, 237 (2007)
  52. Ko JS, Lee JH, Sung KC, J. Kor. Oil Chem. Soc., 29, 11 (2012)
  53. Kim KI, Kim SB, Korean Ind. Chem. News, 15(4), 11 (2012)