화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.24, No.6, 587-592, December, 2013
열분해 조건에 따른 펠렛형 다공성 흡착재의 제조 및 톨루엔 가스 흡착 특성
Preparation of Pelletized Porous Adsorbent with Pyrolysis Temperature and Its Toluene Gas Adsorption Characteristics
E-mail:
초록
본 연구에서는 대표적 휘발성유기화합물(volatile organic compounds, VOCs)인 톨루엔(toluene)을 제거하고자 활성탄소와 폴리비닐알코올(polyvinyl alcohol, PVA)을 바인더로 이용하여 여러 가지 열분해 온도에 따른 펠렛형 다공성 탄소 흡착재를 제조하였다. 제조된 펠렛형 다공성 탄소 흡착재의 물리적 특성은 주사전자현미경(FE-SEM), 비표면적측정장치(BET), 열중량분석기(TGA)를 통하여 분석하였으며, 톨루엔 가스 흡착능은 가스크로마토그래피(GC)를 이용하여 분석하였다. 활성탄소, PVA 및 용매가 각각 1 : 0.1 : 0.8의 질량 비율로 배합될 경우 펠렛의 성형성이 가장 뛰어났다. 톨루엔 흡착 성능은 펠렛에 99% 이상의 톨루엔이 흡착되는 최대 시간을 측정하여 평가하였다. 300 ℃에서 열처리된 흡착재 비표면적은 열처리 전에 비하여 약 4.7배 증가된 약 941.9 m2/g로 측정되었다. 펠렛형 다공성 탄소 흡착재의 미세 기공의 부피는 0.30 cc/g으로 약 5배, 톨루엔 흡착 능력은 26 h으로 약 13배로 각각 증가하였다. 이는 바인더의 함량 및 열분해 온도 변화에 따른 활성탄소의 기공 크기 및 비표면적 변화에 의한 것으로 판단된다.
In this study, we prepared pelletized porous carbon adsorbent (PCA) according to the different pyrolysis temperature using activated carbon and polyvinyl alcohol (PVA) as a binder for the removal of toluene, which is one of the representative volatile organic compounds (VOCs). We investigated physical characteristics of PCA using FE-SEM, BET, TGA and evaluated their adsorption capacity for toluene using GC. It was confirmed that the formability of pellets composed of the activated carbon, PVA and solvent of mass mixing ratio was 1 : 0.2 : 0.8 was the most outstanding. Toluene adsorption capacity was evaluated by measuring the maximum time when more than 99% of toluene adsorbed on the pellet. The specific surface area of the adsorbent pyrolyzed at 300 ℃ was measured as 4.7 times in 941.91 m2/g compared to that of the unpyrolyzed pellet. Micropore volume and toluene adsorption capacity of PCA increased fivefold to be 0.30 cc/g and thirteenfold to be 26 hours compared to that of the unpyrolyzed pellet, respectively. These results were attributed to the change of pore size and specific surface area due to the PVA content and the different pyrolysis temperature.
  1. Lee TJ, Lee JD, Chang WC, J. Korean Ind. Eng. Chem., 14(4), 519 (2003)
  2. Park SK, Kim HC, Appl. Chem. Eng., 21(6), 680 (2010)
  3. Chung KW, Kim JM, Lee SB, Hong IK, Lee JD, Appl. Chem., 5(1), 327 (2001)
  4. Kang SW, Song HT, Min BH, Suh SS, Appl. Chem., 7(1), 321 (2003)
  5. Hyun JS, Lee SH, Rhim YJ, Min BM, KSEE., 13, 112 (2004)
  6. Lim HJ, Kim TY, Prospect. Ind. Chem., 5(6), 33 (2002)
  7. Kim SS, Lee CH, Park SW, Korean Chem. Eng. Res., 48(6), 784 (2010)
  8. Kim HS, Park YS, J. KOSAE., 15, 805 (1999)
  9. Jung MW, Ahn KH, Lee YH, Kim KP, Rhee JS, Park JT, Paeng KJ, Mircrochem. J., 70, 123 (2001)
  10. Zhao XS, Ma Q, Lu GQM, Energy Fuels, 12(6), 1051 (1998)
  11. Woo KJ, Kim SD, Lee SH, Korean Chem. Eng. Res., 45(3), 277 (2007)
  12. Kim JH, Ceramist., 10, 259 (1995)
  13. Guerra CF, Snijders JG, te Velde G, Baerends EJ, Theor. Chem. Acc., 99, 391 (1998)
  14. Seaton NA, Walton JPRB, Quirke N, Carbon., 27, 853 (1989)
  15. Park SJ, Jang YS, J. Korean Ind. Eng. Chem., 13(2), 166 (2002)
  16. Park SK, Kim HC, J. Korean Ind. Eng. Chem., 20(5), 561 (2009)
  17. An HH, KIGAS., 14, 35 (2010)
  18. Oh WC, Anal. Sci. Technol., 13, 332 (2000)
  19. Kim TW, Moon H, J. of Adv. Eng. and Tech., 1, 375 (2008)
  20. Holland BJ, Hay JN, Polymer, 42(16), 6775 (2001)
  21. Gilman JW, VanderHart DL, Bismaleimides T, Thermal Decomposition Chemistry of Poly(vinyl alcohol), Fire and Polymers II: Materials and Test for Hazard, Nelson GL, 599, 161-185, American Chemical Society, Washington DC (1995)
  22. Jhung SH, Chang JS, J. Korean Ind. Eng. Chem., 20(2), 117 (2009)
  23. Cho YH, Na JG, Kim SS, Kim JG, Chung SH, J. Korean Ind. Eng. Chem., 44, 307 (2006)