화학공학소재연구정보센터
Polymer(Korea), Vol.38, No.1, 31-37, January, 2014
ε-Caprolactam과 2-Piperidone으로부터 나일론 6,5 공중합체 제조 및 특성평가
Preparation and Characterization of Nylon 6,5 Copolymers from ε-Caprolactam and 2-Piperidone
E-mail:
초록
본 연구에서는 바이오매스 기반 나일론 6,5 공중합체를 제조하기 위하여 단량체인 ε-caprolactam과 2-piperidone을 glucose로부터 발효공정으로 제조된 lysine과 5-aminovaleric acid로부터 각각 제조하였다. 이들을 potassium tertbutoxide를 촉매로 하고 acetyl-2-caprolactam과 이산화탄소를 개시제로 사용하여 40 ℃에서 음이온 개환 중합 방법을 이용하여 나일론 6,5 공중합체를 제조하였다. 제조된 바이오 나일론 6,5 공중합체의 특성을 여러 가지 기기분석 방법으로 분석하였다. 이때 얻어진 고분자의 점도분자량(Mη)은 최대 30000 g/mol 정도였으며, 중합 수율은 50% 이상이었다. 이들은 모두 semi-crystalline 고분자로 밝혀졌다. 열 특성 분석 결과 용융온도는 약 165 ℃ 정도로 분해온도 250 ℃와 큰 차이를 나타내었다. 이들 고분자들은 우수한 가공성과 응용성을 지닐 것으로 예상된다.
To prepare biomass based nylon 6,5 copolymers, ε-caprolactam and 2-piperidone, the monomers of nylon 6,5 copolymers, were synthesized respectively from lysine and 5-aminovaleric acid which were produced from glucose by the fermentation process. The copolymers were then polymerized by the anionic ring opening polymerization of them at 40 ℃, using potassium tert-butoxide as a catalyst and acetyl-2-caprolactam and carbon dioxide as initiators. The prepared copolymers were characterized with various analytical methods: their viscosity molecular weight (Mη) was as high as 30000 g/mol and polymerization yield was over 50%, and it was found that they were semi-crystalline polymers having melting point at 165 ℃ which was much lower than its thermal degradation point, 250 ℃. These polymers were expected to have good thermal processability and application fields.
  1. Jegal JG, Korea Soc. Ind. Eng. Chem., 15, 21 (2012)
  2. Lim DH, Bae KJ, Hong DS, Kwon IK, Lee JW, Biomater. Res., 15, 66 (2011)
  3. Han JG, The Monthly Packaging World, 217, 57 (2011)
  4. Hong CH, Han DS, Nam BU, Polym. Sci. Technol., 21, 321 (2010)
  5. Park SJ, Kim EY, Noh W, Oh YH, Kim HY, Song BK, Cho KM, Hong SH, Lee SH, Jegal JG, Bioproc. Biosyst. Eng., 36, 885 (2013)
  6. Frost JW, WO 2005123669 (2005)
  7. Pellegata R, Pinza M, Pifferi G, Commun. Synth., 8, 614 (1978)
  8. Stavila E, Loos K, Tetrahedron Lett., 54, 370 (2013)
  9. Roda J, Krliek J, Boukov Z, Eur. Polym. J., 13, 119 (1977)
  10. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S, Int. J. Mol. Sci., 10(9), 3722 (2009)
  11. Kim SC, Polymer Engineeing I, Kim JH, Editor, Hee Joong Dang (1994)
  12. Biao-bing W, Guo-sheng H, Xin Z, Feng-zhen G, J. Mater. Lett., 60, 2715 (2006)
  13. Jung B, Choi SK, Seo GW, J. Korean Chem. Soc., 20, 525 (1976)
  14. Park JH, Jung B, Choi SK, J. Korean Chem. Soc., 24, 167 (1980)
  15. Gaymans RJ, Pieter J, Asperen V, U. S. Patent 4,446,304 (1982)
  16. Anshus BE, Katsumoto K, Serkes IM, U. S. Patent 4,187,370 (1980)
  17. Choi SK, U. S. Patent 3,968,087 (1974)
  18. Jarovitzky PA, U. S. Patent 3,683,046 (1970)
  19. Chung WJ, Choi SK, J. Korean Chem. Soc., 23, 6 (1979)
  20. Robert B, Kensingtion and Calif, U. S. Patent, 4,107,154 (1977)
  21. Robert B, Calif, U. S. Patent 4,101,531 (1977)
  22. Ha CS, Ko MG, Cho WJ, J. Polym. Sci., 38, 1243 (1997)
  23. Kricheldorf HR, Coutin B, Sekiguchi H, J. Polym. Sci., 20, 2353 (1982)
  24. Lukasheva NV, Volokhina AV, Kudryavtsev GI, Vysokomol. Soyed., 3, 475 (1974)
  25. Kim YJ, Kim JH, Korea Patent 10-2012-0113559 (2011)
  26. Kawasaki N, Nakayama A, Yamano N, Takeda S, Kawata Y, Yamamoto N, Aiba S, Polymer, 46(23), 9987 (2005)
  27. Kim NC, Kim JH, Nam SW, Jeon BS, Yoo YT, Kim YJ, Polym.(Korea), 37(2), 211 (2013)