Polymer(Korea), Vol.38, No.1, 31-37, January, 2014
ε-Caprolactam과 2-Piperidone으로부터 나일론 6,5 공중합체 제조 및 특성평가
Preparation and Characterization of Nylon 6,5 Copolymers from ε-Caprolactam and 2-Piperidone
E-mail:
초록
본 연구에서는 바이오매스 기반 나일론 6,5 공중합체를 제조하기 위하여 단량체인 ε-caprolactam과 2-piperidone을 glucose로부터 발효공정으로 제조된 lysine과 5-aminovaleric acid로부터 각각 제조하였다. 이들을 potassium tertbutoxide를 촉매로 하고 acetyl-2-caprolactam과 이산화탄소를 개시제로 사용하여 40 ℃에서 음이온 개환 중합 방법을 이용하여 나일론 6,5 공중합체를 제조하였다. 제조된 바이오 나일론 6,5 공중합체의 특성을 여러 가지 기기분석 방법으로 분석하였다. 이때 얻어진 고분자의 점도분자량(Mη)은 최대 30000 g/mol 정도였으며, 중합 수율은 50% 이상이었다. 이들은 모두 semi-crystalline 고분자로 밝혀졌다. 열 특성 분석 결과 용융온도는 약 165 ℃ 정도로 분해온도 250 ℃와 큰 차이를 나타내었다. 이들 고분자들은 우수한 가공성과 응용성을 지닐 것으로 예상된다.
To prepare biomass based nylon 6,5 copolymers, ε-caprolactam and 2-piperidone, the monomers of nylon 6,5 copolymers, were synthesized respectively from lysine and 5-aminovaleric acid which were produced from glucose by the fermentation process. The copolymers were then polymerized by the anionic ring opening polymerization of them at 40 ℃, using potassium tert-butoxide as a catalyst and acetyl-2-caprolactam and carbon dioxide as initiators. The prepared copolymers were characterized with various analytical methods: their viscosity molecular weight (Mη) was as high as 30000 g/mol and polymerization yield was over 50%, and it was found that they were semi-crystalline polymers having melting point at 165 ℃ which was much lower than its thermal degradation point, 250 ℃. These polymers were expected to have good thermal processability and application fields.
- Jegal JG, Korea Soc. Ind. Eng. Chem., 15, 21 (2012)
- Lim DH, Bae KJ, Hong DS, Kwon IK, Lee JW, Biomater. Res., 15, 66 (2011)
- Han JG, The Monthly Packaging World, 217, 57 (2011)
- Hong CH, Han DS, Nam BU, Polym. Sci. Technol., 21, 321 (2010)
- Park SJ, Kim EY, Noh W, Oh YH, Kim HY, Song BK, Cho KM, Hong SH, Lee SH, Jegal JG, Bioproc. Biosyst. Eng., 36, 885 (2013)
- Frost JW, WO 2005123669 (2005)
- Pellegata R, Pinza M, Pifferi G, Commun. Synth., 8, 614 (1978)
- Stavila E, Loos K, Tetrahedron Lett., 54, 370 (2013)
- Roda J, Krliek J, Boukov Z, Eur. Polym. J., 13, 119 (1977)
- Tokiwa Y, Calabia BP, Ugwu CU, Aiba S, Int. J. Mol. Sci., 10(9), 3722 (2009)
- Kim SC, Polymer Engineeing I, Kim JH, Editor, Hee Joong Dang (1994)
- Biao-bing W, Guo-sheng H, Xin Z, Feng-zhen G, J. Mater. Lett., 60, 2715 (2006)
- Jung B, Choi SK, Seo GW, J. Korean Chem. Soc., 20, 525 (1976)
- Park JH, Jung B, Choi SK, J. Korean Chem. Soc., 24, 167 (1980)
- Gaymans RJ, Pieter J, Asperen V, U. S. Patent 4,446,304 (1982)
- Anshus BE, Katsumoto K, Serkes IM, U. S. Patent 4,187,370 (1980)
- Choi SK, U. S. Patent 3,968,087 (1974)
- Jarovitzky PA, U. S. Patent 3,683,046 (1970)
- Chung WJ, Choi SK, J. Korean Chem. Soc., 23, 6 (1979)
- Robert B, Kensingtion and Calif, U. S. Patent, 4,107,154 (1977)
- Robert B, Calif, U. S. Patent 4,101,531 (1977)
- Ha CS, Ko MG, Cho WJ, J. Polym. Sci., 38, 1243 (1997)
- Kricheldorf HR, Coutin B, Sekiguchi H, J. Polym. Sci., 20, 2353 (1982)
- Lukasheva NV, Volokhina AV, Kudryavtsev GI, Vysokomol. Soyed., 3, 475 (1974)
- Kim YJ, Kim JH, Korea Patent 10-2012-0113559 (2011)
- Kawasaki N, Nakayama A, Yamano N, Takeda S, Kawata Y, Yamamoto N, Aiba S, Polymer, 46(23), 9987 (2005)
- Kim NC, Kim JH, Nam SW, Jeon BS, Yoo YT, Kim YJ, Polym.(Korea), 37(2), 211 (2013)