Applied Chemistry for Engineering, Vol.25, No.2, 193-197, April, 2014
피치계 활성탄소섬유기반 가스센서 제조 및 유해가스 감응 특성
Preparation of Gas Sensor from Pitch-based Activated Carbon Fibers and Its Toxic Gas Sensing Characteristics
E-mail:
초록
피치계 활성탄소섬유의 유해가스 감응특성을 알아보고자 피치계 활성탄소섬유와 폴리비닐알코올(PVA)을 이용하여 가스센서용 전극을 제조하였다. 제조된 가스센서용 활성탄소섬유 전극의 물리화학적 특성은 주사전자현미경(SEM) 및 비표면적 측정기(BET)를 이용하여 분석하였다. 또한, 전극의 유해가스 감응특성은 NH3, NO 및 CO2와 같은 여러 유독가스를 이용하여 확인하였다. 가스센서용 활성탄소섬유 전극의 비표면적은 바인더인 PVA에 의하여 활성탄소섬유보다 33% 감소하였지만, 전극의 기공크기분포는 PVA에 의하여 크게 영향을 받지 않았다. 가스센서용 활성탄소섬유 전극은 반도체 기반 가스센서와는 다르게 전자도약에 의해서 유해가스를 감응하였다. 본 연구에서, 활성탄소섬유 전극의 저항은 100 ppm의 NH3 유해가스에 대하여 7.5% 감소하였으며, 그 NH3 가스 감응특성이 다른 유해가스보다 뛰어남을 확인하였다.
The electrode for gas sensor was prepared by using pitch-based activated carbon fibers and polyvinyl alcohol (PVA) to investigate the toxic gas sensing characteristics. The hysicochemical properties of activated carbon fibers electrode for gas sensor were analyzed with SEM and BET. Toxic gases sensing property of the electrode was also identified by different toxic gases such as NH3, NO and CO2. The specific surface area of activated carbon fibers electrode for gas sensor was decreased by 33% owing to PVA used as a binder compared with the activated carbon fibers. However, its pore size distribution of the ACF electrode was not greatly influenced by PVA. The activated carbon fibers electrode for gas sensor responded to toxic gases by electron hopping unlike semiconductor based gas sensors. In this study, activated carbon fibers electrode was decreased to 7.5% in resistance for the NH3 gas of the 100 ppm concentration and its NH3 gas sensing property was confirmed the most excellent compared with other toxic gases.
- Im JS, Kang SC, Lee SH, Lee YS, Carbon., 48, 2573 (2010)
- Byun HJ, Ryu KN, Yoon CS, Park JI, J. Kor. Soc. Occup.Environ. Hyg., 21, 11 (2011)
- Cheong JP, You SJ, J. Kor. Soc. Environ. Eng., 33, 644 (2011)
- Kim DH, Kang YG, Kang YJ, J. Kor. Soc. Safe., 28, 37 (2013)
- Olyaee S, Naraghi A, Ahmadi V, Optik., 125, 596 (2014)
- Tong PV, Hoa ND, Quang VV, Duy NV, Hieu NV, Sens. Actuators B., 183, 372 (2013)
- Hoa ND, Quang VV, Kim D, Hieu NV, J. Alloys Comp., 549, 260 (2013)
- Setkus A, Kaciulis S, Pandolfi L, Senuliene D, Strazdiene V, Sens. Actuators B., 111, 36 (2005)
- Papadopoulous CA, Vlachos DS, Avaritsiotis JN, Sens. Actuators B., 32, 61 (1996)
- Meixner H, Gerblinger J, Lampe U, Fleischer M, Sens. Actuators B., 23, 119 (1995)
- Bondavalli P, Legagneux P, Pribat D, Sens. Actuators B., 140, 304 (2009)
- Lee SH, Im JS, Kang SC, Bae TS, In SJ, Jeong E, Lee YS, Chem. Phys. Lett., 497(4-6), 191 (2010)
- Kim BJ, Lee YS, Park SJ, Int. J. Hydrogen Energy., 33, 4112 (2008)
- Im JS, Park SJ, Lee YS, Int. J. Hydrogen Energy., 34, 1423 (2009)
- Phan NH, Rio S, Faur C, Coq LL, Cloirec PL, Nguyen TH, Carbon., 44, 2569 (2006)
- Kim DY, Kim Y, Cho S, Jung JY, Kim MI, Lee YS, Appl. Chem. Eng., 24(6), 587 (2013)
- Kim JG, Kang SC, Shin E, Kim DY, Lee JH, Lee YS, Appl. Chem. Eng., 23(1), 47 (2012)
- Moon J, Park JA, Lee SJ, Zyung T, Kim ID, Sens. Actuators B., 149, 301 (2010)
- Cho WS, Moon SI, Paek KK, Lee YH, Park JH, Ju BK, Sens. Actuators B., 119, 180 (2006)
- Suehiro J, Imakiire H, Hidaka SI, Ding W, Zhou G, Imasaka K, Hara M, Sens. Actuators B., 114, 943 (2006)
- Kang SC, Im JS, Lee YS, Appl. Chem. Eng., 22(3), 243 (2011)
- Lee SK, Im JS, Kang SC, Lee S, Lee YS, J. Porous Mater., 19, 989 (2012)