화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.1, 151-156, January, 2015
용매의 반복 방향성 결정화를 통해 제작된 새로운 다공성재료
Novel Porous Materials Prepared by Repeated Directional Crystallization of Solvent
E-mail:
초록
본 연구에서는 디메틸실록산과 벤젠으로 구성된 단량체 용액에 방향성 결정화를 두 차례 진행하여 새로운 기공 구조를 제작하였다. 우선 첫 번째 용매의 방향성 결정화를 통해 벌집 형태의 기공 구조를 제작하였다. 상기 용액을 다시 담지한 뒤, 다시 방향성 결정화를 진행하게 되면 벌집 형태의 기공 구조 내에 또 다른 기공 구조가 혼재되어 있는 새로운 구조를 얻을 수 있었다. 반복된 방향성 결정화로 제조된 다공성 소재는, 한번의 방향성 결정화로 제조된 소재보다 압입탄성계수와 압입경도가 높았으며, 높은 농도의 용액으로 두 번째 방향성 결정화가 진행된 경우에 최대 증가치(압입탄성계수: 2140% 증가, 압입경도: 2330% 증가)를 얻을 수 있었다. 반면, 두 번째 방향성 결정화가 진행된 경우, 첫 번째 방향성 결정화만 진행된 경우보다 기공률과 접촉각은 감소하였으며, 높은 농도의 용액으로 두 번째 방향성 결정화가 진행된 경우 이들 물성의 최대 감소(기공률: 21% 감소, 접촉각: 36% 감소)를 관찰할 수 있었다.
Herein, novel porous structures were fabricated from monomer solutions of dimethylsiloxane and benzene by directional crystallization in twice. First, a honeycomb-like structure was fabricated by 1st directional crystallization of solvent. By infiltration of the solution and subsequent 2nd directional crystallization, novel structures of different pores in the honeycomb-like structure were fabricated. The porous materials prepared by the repeated directional crystallization have higher indentation modulus and hardness than those of the samples prepared by single directional crystallization. When a higher solution concentration was used in 2nd directional crystallization, the maximum increase (indentation modulus: 2140% increase, indentation hardness: 2330% increase) was obtained. On the other hand, porosity and contact angle were lower in the samples from 2nd directional crystallization than those from 1st directional crystallization. A large decreases was observed, when a relatively high concentration was used in 2nd directional crystallization (porosity: 21% decrease, contact angle: 36% decrease).
  1. Ltters JC, Olthuis W, Veltink PH, Bergveld P, J. Micromech. Microeng., 7, 145 (1997)
  2. Kang DW, Kuk IS, Jung CH, Hwang IT, Choi JH, Nho YC, Mun S, Lee YM, Polym.(Korea), 35(2), 157 (2011)
  3. Hong IK, Lee S, J. Ind. Eng. Chem., 19(1), 42 (2013)
  4. Pang C, Lee GY, Kim TI, Kim SM, Kim HN, Ahn SH, Suh KY, Nat. Mater., 11(9), 795 (2012)
  5. Liu X, Zhu Y, Nomani MW, Wen X, Hsia T, Koley G, J. Micromech. Microeng., 23, 025022 (2013)
  6. Mannsfeld SCB, Tee BCK, Stoltenberg RM, Chen CVHH, Barman S, Muir BVO, Sokolov AN, Reese C, Bao ZN, Nat. Mater., 9(10), 859 (2010)
  7. Lee D, Choi Y, Microelectron. Eng., 85, 1054 (2008)
  8. Baek WS, Lee KY, Polym.(Korea), 25(4), 528 (2001)
  9. Ghaffarian V, Mousavi SM, Bahreini M, Jalaei H, J. Ind. Eng. Chem., 20(4), 1359 (2014)
  10. Kim WI, Kim CJ, Kim DY, Kwon OK, Kwon OH, Polym.(Korea), 34(5), 442 (2010)
  11. Okaji R, Taki K, Nagamine S, Ohshima M, J. Appl. Polym. Sci., 130(1), 526 (2013)
  12. Lee H, Lee J, J. Ind. Eng. Chem., 21, 1183 (2015)
  13. Barrow M, Zhang H, Soft Matter, 9, 2723 (2013)
  14. Gevers LEM, Vankelecom IFJ, Jacobs PA, J. Membr. Sci., 278(1-2), 199 (2006)
  15. Halake K, Birajdar M, Kim BS, Bae H, Lee CC, Kim YJ, Kim S, Kim HJ, Ahn S, An SY, Lee J, J. Ind. Eng. Chem., 20(6), 3913 (2014)
  16. Herbert EG, Pharr GM, Oliver WC, Lucas BN, Hay JL, Thin Solid Films, 398, 331 (2001)
  17. Oliver WC, Pharr GM, J. Mater. Res., 19, 3 (2004)
  18. Oliver WC, Pharr GM, J. Mater. Res., 7, 1564 (1992)
  19. Xu HHK, Smith DT, Schumacher GE, Eichmiller FC, Antonucci JM, Dent. Mater., 16, 248 (2000)
  20. Gupta S, Carrillo F, Li C, Pruitt L, Puttlitz C, Mater. Lett., 61, 448 (2007)
  21. Jheng L, Hsu SL, Tsai T, Chang WJ, J. Mater. Chem. A, 2, 4225 (2014)
  22. Lim HS, Korean Ind. Chem. News, 15(1), 11 (2012)