Polymer(Korea), Vol.39, No.1, 151-156, January, 2015
용매의 반복 방향성 결정화를 통해 제작된 새로운 다공성재료
Novel Porous Materials Prepared by Repeated Directional Crystallization of Solvent
E-mail:
초록
본 연구에서는 디메틸실록산과 벤젠으로 구성된 단량체 용액에 방향성 결정화를 두 차례 진행하여 새로운 기공 구조를 제작하였다. 우선 첫 번째 용매의 방향성 결정화를 통해 벌집 형태의 기공 구조를 제작하였다. 상기 용액을 다시 담지한 뒤, 다시 방향성 결정화를 진행하게 되면 벌집 형태의 기공 구조 내에 또 다른 기공 구조가 혼재되어 있는 새로운 구조를 얻을 수 있었다. 반복된 방향성 결정화로 제조된 다공성 소재는, 한번의 방향성 결정화로 제조된 소재보다 압입탄성계수와 압입경도가 높았으며, 높은 농도의 용액으로 두 번째 방향성 결정화가 진행된 경우에 최대 증가치(압입탄성계수: 2140% 증가, 압입경도: 2330% 증가)를 얻을 수 있었다. 반면, 두 번째 방향성 결정화가 진행된 경우, 첫 번째 방향성 결정화만 진행된 경우보다 기공률과 접촉각은 감소하였으며, 높은 농도의 용액으로 두 번째 방향성 결정화가 진행된 경우 이들 물성의 최대 감소(기공률: 21% 감소, 접촉각: 36% 감소)를 관찰할 수 있었다.
Herein, novel porous structures were fabricated from monomer solutions of dimethylsiloxane and benzene by directional crystallization in twice. First, a honeycomb-like structure was fabricated by 1st directional crystallization of solvent. By infiltration of the solution and subsequent 2nd directional crystallization, novel structures of different pores in the honeycomb-like structure were fabricated. The porous materials prepared by the repeated directional crystallization have
higher indentation modulus and hardness than those of the samples prepared by single directional crystallization. When a higher solution concentration was used in 2nd directional crystallization, the maximum increase (indentation modulus: 2140% increase, indentation hardness: 2330% increase) was obtained. On the other hand, porosity and contact angle were
lower in the samples from 2nd directional crystallization than those from 1st directional crystallization. A large decreases was observed, when a relatively high concentration was used in 2nd directional crystallization (porosity: 21% decrease, contact angle: 36% decrease).
Keywords:porous materials;polydimethylsiloxane;melt crystallization;directional freezing;ice templating.
- Ltters JC, Olthuis W, Veltink PH, Bergveld P, J. Micromech. Microeng., 7, 145 (1997)
- Kang DW, Kuk IS, Jung CH, Hwang IT, Choi JH, Nho YC, Mun S, Lee YM, Polym.(Korea), 35(2), 157 (2011)
- Hong IK, Lee S, J. Ind. Eng. Chem., 19(1), 42 (2013)
- Pang C, Lee GY, Kim TI, Kim SM, Kim HN, Ahn SH, Suh KY, Nat. Mater., 11(9), 795 (2012)
- Liu X, Zhu Y, Nomani MW, Wen X, Hsia T, Koley G, J. Micromech. Microeng., 23, 025022 (2013)
- Mannsfeld SCB, Tee BCK, Stoltenberg RM, Chen CVHH, Barman S, Muir BVO, Sokolov AN, Reese C, Bao ZN, Nat. Mater., 9(10), 859 (2010)
- Lee D, Choi Y, Microelectron. Eng., 85, 1054 (2008)
- Baek WS, Lee KY, Polym.(Korea), 25(4), 528 (2001)
- Ghaffarian V, Mousavi SM, Bahreini M, Jalaei H, J. Ind. Eng. Chem., 20(4), 1359 (2014)
- Kim WI, Kim CJ, Kim DY, Kwon OK, Kwon OH, Polym.(Korea), 34(5), 442 (2010)
- Okaji R, Taki K, Nagamine S, Ohshima M, J. Appl. Polym. Sci., 130(1), 526 (2013)
- Lee H, Lee J, J. Ind. Eng. Chem., 21, 1183 (2015)
- Barrow M, Zhang H, Soft Matter, 9, 2723 (2013)
- Gevers LEM, Vankelecom IFJ, Jacobs PA, J. Membr. Sci., 278(1-2), 199 (2006)
- Halake K, Birajdar M, Kim BS, Bae H, Lee CC, Kim YJ, Kim S, Kim HJ, Ahn S, An SY, Lee J, J. Ind. Eng. Chem., 20(6), 3913 (2014)
- Herbert EG, Pharr GM, Oliver WC, Lucas BN, Hay JL, Thin Solid Films, 398, 331 (2001)
- Oliver WC, Pharr GM, J. Mater. Res., 19, 3 (2004)
- Oliver WC, Pharr GM, J. Mater. Res., 7, 1564 (1992)
- Xu HHK, Smith DT, Schumacher GE, Eichmiller FC, Antonucci JM, Dent. Mater., 16, 248 (2000)
- Gupta S, Carrillo F, Li C, Pruitt L, Puttlitz C, Mater. Lett., 61, 448 (2007)
- Jheng L, Hsu SL, Tsai T, Chang WJ, J. Mater. Chem. A, 2, 4225 (2014)
- Lim HS, Korean Ind. Chem. News, 15(1), 11 (2012)