Korean Journal of Materials Research, Vol.18, No.10, 535-541, October, 2008
유기금속기상증착법에 의한 InGaN/GaN 양자점 구조의 성장거동
Growth Behavior of InGaN/GaN Quantum Dots Structure Via Metal-organic Chemical Vapor Deposition
E-mail:
Growth behavior of InGaN/GaN self-assembled quantum dots (QDs) was investigated with respect to different growth parameters in low pressure metalorganic chemical vapor deposition. Locally formed examples of three dimensional InGaN islands were confirmed from the surface observation image with increasing indium source ratio and growth time. The InGaN/GaN QDs were formed in Stranski-Krastanow (SK) growth mode by the continuous supply of metalorganic (MO) sources, whereas they were formed in the Volmer-Weber (V-W) growth mode by the periodic interruption of the MO sources. High density InGaN QDs with 1~2 nm height and 40~50 nm diameter were formed by the S-K growth mode. Dome shape InGaN dots with 200~400 nm diameter were formed by the V-W growth mode. InN content in InGaN QDs was estimated to be reduced with the increase of growth temperature. A strong peak between 420-460 nm (2.96-2.70 eV) was observed for the InGaN QDs grown by S-K growth mode in photoluminescence spectrum together with the GaN buffer layer peak at 362.2 nm (3.41 eV).
Keywords:metal-organic chemical vapor deposition (MOCVD);indium gallium nitride (InGaN);quantum dots;self-assembling;photoluminescence
- Nakamura S, Senoh M, Nagahama S, Iwase N, Yamada T, Matsushita T, Sugimoto Y, Kiyoku H, Jpn. J. Appl. Phys. Part 2, 36, L1059 (1997)
- Davydov VY, Klochikhin AA, Seisyan RP, Emtse VV, Ivanov SV, Bechstedt F, Furthmuller J, Harima H, dryi AV, Aderhold J, Semchinova O, Graul J, Phys. Stat. Sol. B, 229, R1 (2002)
- Jung WG, Jung SH, Kung P, Razeghi M, Nanotechnology, 17(1), 54 (2006)
- Tachibana K, Someya T, Arakawa Y, Appl. Phys. Lett., 74(3), 393 (1999)
- Tachibana K, Someya T, Arakawa Y, Werner R, Forchel A, Appl. Phys. Lett., 75(17), 2605 (1999)
- Moriwaki O, Someya T, Tachibana K, Ihisda S, Arakawa Y, Appl. Phys. Lett., 76(17), 2361 (2000)
- Su YK, Chang SJ, Ji LW, Chang CS, Wu LW, Lai WC, Fang TH, Lam KT, Semicond. Sci. Technol., 19, 389 (2004)
- Hirayama H, Tanaka S, Ramvall P, Aoyagi Y, Appl. Phys. Lett., 72(14), 1736 (1998)
- Arakawa Y, Phys. Stat. Sol. A, 188, 37 (2001)
- Sherliker B, Halsall MP, Buckle PD, Parbrook PJ, Wang T, Appl. Phys. Lett., 88, 122115 (2006)
- Petroff PM, Medeiros-Ribeiro G, MRS Bull., 21, 50 (1996)
- Daruka I, Barabsi AL, Phys. Rev. Lett., 79, 3708 (1997)
- Venables JA, Spiller GDT, Hanbucken M, Rep. Prog. Phys., 47, 399 (1984)
- Lewis B, Campbell DS, J. Vac. Sci, Technol., 4, 209 (1967)
- Kim HJ, Na H, Kwon SY, Seo HC, Kim HJ, Shin Y, Lee KH, Kim DH, Oh HJ, Yoon S, Sone C, Park Y, Yoon E, J. Cryst. Growth, 269(1), 95 (2004)
- Kim HJ, Kwon SY, Kim HJ, Na H, Shin Y, Lee KH, Kwak HS, Cho YH, Yoon JW, Cheong H, Yoon E, Phys. Stat. Sol. C, 4, 112 (2007)
- Jetter M, Perez-Solorzano V, Kobayashi Y, Ost M, Scholz F, Schweizer H, Phys. Stat. Sol. A, 192, 91 (2002)