화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.27, No.1, 1-10, February, 2015
Effect of cholesterol and triglycerides levels on the rheological behavior of human blood
E-mail:
Important public health problems worldwide such as obesity, diabetes, hyperlipidemia and coronary diseases are quite common. These problems arise from numerous factors, such as hyper-caloric diets, sedentary habits and other epigenetic factors. With respect to Mexico, the population reference values of total cholesterol in plasma are around 200 mg/dL. However, a large proportion has higher levels than this reference value. In this work, we analyze the rheological properties of human blood obtained from 20 donors, as a function of cholesterol and triglyceride levels, upon a protocol previously approved by the health authorities. Samples with high and low cholesterol and triglyceride levels were selected and analyzed by simplecontinuous and linear-oscillatory shear flow. Rheometric properties were measured and related to the structure and composition of human blood. In addition, rheometric data were modeled by using several constitutive equations: Bautista-Manero-Puig (BMP) and the multimodal Maxwell equations to predict the flow behavior of human blood. Finally, a comparison was made among various models, namely, the BMP, Carreau and Quemada equations for simple shear rate flow. An important relationship was found between cholesterol, triglycerides and the structure of human blood. Results show that blood with high cholesterol levels (400 mg/dL) has flow properties fully different (higher viscosity and a more pseudo-plastic behavior) than blood with lower levels of cholesterol (tendency to Newtonian behavior or viscosity plateau at low shear rates).
  1. Acierno D, La Mantia FP, Marrucci G, Titomanlio G, J. Non-Newton. Fluid, 1, 125 (1976)
  2. Bautista F, de Santos JM, Puig JE, Manero O, J. Non-Newton. Fluid Mech., 80(2-3), 93 (1999)
  3. Bautista F, Soltero JFA, Perez-Lopez JH, Puig JE, Manero O, J. Non-Newton. Fluid Mech., 94(1), 57 (2000)
  4. Bautista F, Soltero JFA, Macias ER, Puig JE, Manero O, J. Phys. Chem. B, 106(50), 13018 (2002)
  5. Baskurt OK, Meiselman HJ, Clin. Hemorheol. Micro., 53, 23 (2013)
  6. Baumler H, Donath E, Krabi A, Knippel W, Budde A, Kiesewetter H, Biorheology, 33, 333 (1996)
  7. Brooks DE, J. Colloid Interf. Sci., 43, 700 (1973)
  8. Brooks DE, Mechanism of red cell aggregation. In Blood Cells, Rheology, and Aging, Springer Berlin Heidelberg, pp. 158-162. (1988)
  9. Calderas F, Sanchez-Solis A, Maciel A, Manero O, Macromol. Symp., 283, 354 (2009)
  10. Calderas F, Herrera-Valencia EE, Sanchez-Solis A, Manero O, Medina-Torres L, Renteria A, Sanchez-Olivares G, Korea-Aust. Rheol. J., 25(4), 233 (2013)
  11. Campo-Deano L, Dullens RP, Aarts DG, Pinho FT, Oliveira NS, Biomicrofluidics, 7, 034102 (2013)
  12. Caram Y, Bautista F, Puig JE, Manero O, Rheol. Acta, 46(1), 45 (2006)
  13. Chien S, Dellenback RJ, Usami S, Burton DA, Gustavson PF, Magazinovic V, Am. J. Physiol., 225, 866 (1973)
  14. Chien S, Sung LA, Clin. Hemorheol., 7, 71 (1987)
  15. Dekee D, Fong CF, Polym. Eng. Sci., 34(5), 438 (1994)
  16. Esteridge BH, Reynolds AP, Walters NJ, Basic Medical Laboratory Techniques, Cengage Learning, pp. 127. (2000)
  17. Ford J, Int. J. Lab. Hematol., 35, 351 (2013)
  18. Fredrickson AG, AIChE J., 16, 436 (1970)
  19. Giesekus H, Rheol. Acta, 5, 29 (1966)
  20. Giesekus H, J. Non-Newton. Fluid, 11, 69 (1982)
  21. Giesekus H, J. Non-Newton. Fluid, 14, 47 (1984)
  22. Herrera EE, Calderas F, Chavez AE, Manero O, Mena B, Rheol. Acta, 48(7), 779 (2009)
  23. Herrera EE, Calderas F, Chavez AE, Manero O, J. Non-Newton. Fluid Mech., 165(3-4), 174 (2010)
  24. Hogman CF, Curr. Opin. Hematol., 6, 427 (1999)
  25. Hogman CF, Meryman HT, Transfus. Med. Rev., 13, 275 (1999)
  26. Johnston BM, Johnston PR, Corney S, Kilpatrick D, J. Biomech., 37, 709 (2004)
  27. Jung J, Lee BK, Shin S, Korea-Aust. Rheol. J., 26(2), 191 (2014)
  28. Li R, Yu W, Zhou C, J. Macromol. Sci. B, 45, 889 (2006)
  29. Lerman-Garber I, Sepulveda-Amor JA, Tapia-Conyer R, Magos-Lopez C, Cardoso-Saldana G, Zamora-Gonzalez J, Posadas-Romero C, Atherosclerosis, 103, 195 (1993)
  30. Longster GH, Buckley T, Sikorski J, Tovey LA, Vox Sang., 22, 161 (1972)
  31. Loffler H, Rastetter J, Haferlach T, Begemann H, Atlas of Clinical Hematology 6th Ed., Springer, pp. 4. (2005)
  32. Manero O, Bautista F, Soltero JFA, Puig JE, J. Non-Newton. Fluid Mech., 106(1), 1 (2002)
  33. Marcinkowska-Gapinka A, Gapinski J, Elikowski W, Jaroszyk F, Kubisz L, Med. Biol. Eng. Comput., 45, 837 (2007)
  34. Merrill EW, Cheng CS, Pelletier GA, J. Appl. Physiol., 26, 1 (1969)
  35. Rosenson RS, Shott S, Tangney CC, Atherosclerosis, 161, 433 (2002)
  36. Saldanha C, Loureiro J, Moreira C, Silva J, Biochem. Res. Int., 2012, 261736 (2011)
  37. Schmid-Schonbein H, Gaehtgens P, Hirsch H, J. Clin. Invest., 47, 1447 (1968)
  38. Snabre P, Mills P, Colloid Polym. Sci., 263, 494 (1985)
  39. Solheim BG, Flesland O, Seghatchian J, Brosstad F, Transfus. Apher. Sci., 31, 185 (2004)
  40. Soltero JFA, Bautista F, Puig JE, Manero O, Langmuir, 15(5), 1604 (1999)
  41. Thurston GB, Biophys. J., 12, 1205 (1972)
  42. Thurston GB, Microvasc. Res., 9, 145 (1975)