화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.13, No.10, 668-672, October, 2003
기상증착공정에 의한 산화아연 나노로드의 성장
Growth of ZnO Nanorod Using VS Method
E-mail:
The ZnO nanorods were synthesized using vapor-solid (VS) method on sodalime glass substrate without the presence of metal catalyst. ZnO nanorods were prepared thermal evaporation of Zn powder at . As-fabricated ZnO nanorods had an average diameter and length of 85 nm and 1.7 . Transmission electron microscopy revealed that the ZnO nanorods were single crystalline with the growth direction perpendicular to the (101) lattice plane. The influences of reaction time on the formation of the ZnO nanorods were investigated. The photoluminescence measurements showed that the ZnO nanorods had a strong ultraviolet emission at around 380 nm and a green emission at around 500 nm.
  1. Ijima S, Nature, 354, 56 (1991)
  2. Rho DH, Kim JS, Byun DJ, Yang JW, Kim NR, Korean J. Mater. Res., 13(6), 404 (2003)
  3. Wu XC, Song WH, Huang WD, Pu MH, Zhao B, Sun YP, Du JJ, Mater. Res. Bull., 36(5-6), 847 (2001)
  4. Li ZJ, Chen XL, Li HJ, Xu YP, J. Cryst. Growth, 236(1-3), 71 (2002)
  5. Cui Z, Meng GW, Huang WD, Wang GZ, Zhang LD, Mater. Res. Bull., 35(10), 1653 (2000)
  6. Tang CC, Fan SS, de la Chapelle ML, Li P, Chem. Phys. Lett., 333(1-2), 12 (2001)
  7. Li SY, Lee CY, Tseng TY, J. Cryst. Growth, 247(3-4), 357 (2003)
  8. Wu Y, Fan R, Yang P, Nano Letters., 2, 83 (2002)
  9. Huang MH, Wu YY, Feick H, Tran N, Weber E, Yang PD, Adv. Mater., 13(2), 113 (2001)
  10. Gudiksen MS, Wang JF, Lieiber CM, J. Phys. Chem. B, 105(19), 4062 (2001)
  11. Zhang LD, Solid State Commun., 115, 253 (2000)
  12. Shriki IA, Electrochem. Soc., 133, 666 (1986)
  13. Lee JS, Park K, Kang MI, Park IW, Kim SW, Cho WK, Han HS, Kim S, J. Cryst. Growth, 254(3-4), 423 (2003)
  14. Kim HS, Sigmund W, Appl. Phys. Lett., 81(11), 2085 (2002)
  15. Zhang J, Yu W, Zhang I, Phys. Lett. A, 299, 276 (2002)
  16. Pan ZW, Dai ZR, Wang ZL, Science, 291(5510), 1947 (2001)
  17. Yumoto H, Hasiguti RR, Watanabe T, Igota N, J. Cryst. Gr., 87, 1 (1988)
  18. Dai Y, Zhang Y, Bai YQ, Wang ZL, Chem. Phys. Lett., 375(1-2), 96 (2003)
  19. Chen XY, An CH, Liu JW, Wang X, Qian YT, J. Cryst. Growth, 253(1-4), 357 (2003)
  20. Wang YW, Zhang LD, Wang GZ, Peng XS, Chu ZQ, Liang CH, J. Cryst. Growth, 234(1), 171 (2002)
  21. Roy VAL, Djurisic AB, Chan WK, Gao J, Lui HF, Surya C, Appl. Phys. Lett., 83(1), 141 (2003)
  22. Dai Y, Zang Y, Wang ZL, Solidstate Comm., 126, 629 (2003)
  23. Vahnheusden K, Warren WL, Seager CH, Tallant DK, Voigt JA, Gnade BE, J. Appl. Phys., 79(10), 7983 (1996)
  24. Lin B, Fu Z, Jia Y, Appl. Phys. Lett., 79(7), 943 (2001)
  25. Studenikin SA, Cocuvera M, J. Appl. Phys., 91(8), 5060 (2002)
  26. Reynolds DC, Look DC, Jogai B, J. Appl. Phys., 89(11), 6189 (2001)
  27. Yao BD, Chan YF, Wang N, Appl. Phys. Lett., 81(4), 757 (2002)
  28. Geng BY, Wang GZ, Jiang Z, Xie T, Sun SH, Meng GW, Zhang LD, Appl. Phys. Lett., 82(26), 4791 (2003)