Polymer(Korea), Vol.39, No.2, 219-224, March, 2015
현무암섬유 섬유 배향에 따른 현무암섬유 강화 복합재료의 기계적 계면특성 영향
Influence of Fiber Array Direction on Mechanical Interfacial Properties of Basalt Fiber-reinforced Composites
E-mail:
초록
본 연구에서는 현무암섬유의 계면을 황산과 과산화수소로 처리하고 섬유 배향각을 0°, 0°/90°, 0°/45°/-45°로 달리하여 현무암섬유 에폭시 강화 복합재료의 기계적 특성에 미치는 영향에 대해서 살펴보았다. 기계적 특성은 층간 전단강도(ILSS)와 파괴인성 요소 중 임계응력세기인자(KIC) 측정을 통하여 고찰하였으며, 섬유의 표면미세구조 변화와 복합재료의 파단면은 주사전자현미경(SEM)으로 관찰하였다. 또한 섬유표면에 계면처리의 여부를 확인하기 위하여 적외선 분광법(FTIR)과 X-선 광전자 분광법(XPS)을 분석하였다. 실험결과 계면처리한 섬유 표면의 -OH 기(hydroxyl)가 증가됨을 확인하였다. 계면처리한 후의 기계적 특성이 계면처리 전의 기계적 특성보다 약 ~100% 증가하였다. 이러한 결과는 표면처리에 의해 섬유와 에폭시 수지 매트릭스 사이의 계면결합력을 증가시킨 것으로 판단된다.
In this work, the effect of fiber array direction including 0°, 0°/90°, 0°/45°/-45° was investigated for mechanical properties of basalt fiber-reinforced composites. Mechanical properties of the composites were studied using interlaminar shear strength (ILSS) and critical stress intensity factor (KIC) measurements. The cross-section morphologies of basalt fiber-reinforced epoxy composites were observed by scanning electron microscope (SEM). Also, the surface properties
of basalt fibers were determined by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). From the results, it was observed that acid treated basalt fiber-reinforced composites showed significantly higher mechanical interfacial properties than those of untreated basalt fiber-reinforced composites. These results indicated that the hydroxyl functional groups of basalt fibers lead to the improvement of the mechanical interfacial properties of basalt fibers/epoxy composites in the all array direction.
Keywords:basalt fiber;mechanical interfacial properties;fibers array direction;basalt fibers-reinforced composites.
- Dharmawan F, Simpson G, Herszberg I, John S, Compos. Struct., 75, 328 (2006)
- Huh Y, Jin JK, Fiber. Polym., 40, 139 (2007)
- Chawla KK, Composite Materials, Springer- Verlag, New York, USA, p 58 (1987)
- Davis DC, Wikerson JW, Zhu J, Ayewah DOO, Compos. Struct., 92, 2653 (2010)
- Park SJ, Interfacial Forces and Fields: Theory and Applications, Hsu JP, Editor, Marcel Dekker, New York (1999)
- Kim Y, Lim J, Korean J. Mater. Res., 2, 133 (1992)
- Kim Y, Kwon I, Lim J, Chung S, Korean J. Mater. Res., 3, 84 (1993)
- Ochola RO, Marcus K, Nurick GN, Franz T, Compos. Struct., 63, 455 (2004)
- Pereira AB, de Morais AB, de Moura MFSF, Magalhaes AG, Composites(A), 36, 1119 (2005)
- Lee J, Transactions of KSAE, 4, 206 (1996)
- Kim Y, Transactions of KSAE, 17, 15 (2009)
- Anirudhan TS, Suchithra PS, J. Ind. Eng. Chem., 16(1), 130 (2010)
- Qu XF, Zheng JT, Zhang YZ, J. Colloid Interface Sci., 309(2), 429 (2007)
- Ko KR, Yang BH, Ryu SK, HWAHAK KONGHAK, 41(3), 307 (2003)
- Fukunaga A, Ueda S, Compos. Sci. Tech., 60, 249 (2000)
- Hong MS, Bae KM, Choi WK, Lee HS, Park SJ, An KH, Kim BJ, Appl. Chem. Eng., 23(3), 313 (2012)
- Chun SH, Eom WS, Kim HD, Fiber. Polym., 50 (2013)
- Park SJ, Oh JS, Lee JR, Rhee KY, J. Korean Soc. Compos. Mater., 16, 25 (2003)
- El Didamon H, Abdel Gawwad HA, HBRC J., 8, 170 (2012)
- Saikia BJ, Parthasarathy G, J. Mod. Phys., 1, 206 (2010)
- Baklanova NI, Cement Concrete Res., 53, 1 (2013)
- Ryu SK, Park BJ, Park SJ, J. Colloid Interface Sci., 215(1), 167 (1999)
- Yong DK, Choi HN, Yang JW, Lee SG, J. Adhes. Interf., 13, 24 (2012)
- Park SJ, Zhu L, Jin FL, Bull. Korean Chem. Soc., 33, 2513 (2012)
- King TR, Adams DF, Buttry DA, Composites, 22, 380 (1991)
- Lee JR, Heo GY, Park SJ, Polym.(Korea), 26(1), 80 (2002)
- Park SJ, Jang YS, Rhee KY, J. Colloid Interface Sci., 245(2), 383 (2002)
- George GA, John NS, Friend G, J. Appl. Polym. Sci., 42, 643 (1991)
- Tae YI, Yun YS, Kwon OH, J. KIIS, 17, 25 (2002)
- Kim TS, Song SH, J. Korean Soc. Precis. Eng., 01, 1402 (2003)
- Yim YJ, Seo MK, Kim HY, Park SJ, Polym.(Korea), 36(4), 494 (2012)
- Park SJ, Jang YS, J. Colloid Interface Sci., 237(1), 91 (2001)
- Park SJ, Jeong HJ, Nah CW, Mater. Sci. Eng. A. Struct. Mater., 385, 13 (2004)