화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.2, 219-224, March, 2015
현무암섬유 섬유 배향에 따른 현무암섬유 강화 복합재료의 기계적 계면특성 영향
Influence of Fiber Array Direction on Mechanical Interfacial Properties of Basalt Fiber-reinforced Composites
E-mail:
초록
본 연구에서는 현무암섬유의 계면을 황산과 과산화수소로 처리하고 섬유 배향각을 0°, 0°/90°, 0°/45°/-45°로 달리하여 현무암섬유 에폭시 강화 복합재료의 기계적 특성에 미치는 영향에 대해서 살펴보았다. 기계적 특성은 층간 전단강도(ILSS)와 파괴인성 요소 중 임계응력세기인자(KIC) 측정을 통하여 고찰하였으며, 섬유의 표면미세구조 변화와 복합재료의 파단면은 주사전자현미경(SEM)으로 관찰하였다. 또한 섬유표면에 계면처리의 여부를 확인하기 위하여 적외선 분광법(FTIR)과 X-선 광전자 분광법(XPS)을 분석하였다. 실험결과 계면처리한 섬유 표면의 -OH 기(hydroxyl)가 증가됨을 확인하였다. 계면처리한 후의 기계적 특성이 계면처리 전의 기계적 특성보다 약 ~100% 증가하였다. 이러한 결과는 표면처리에 의해 섬유와 에폭시 수지 매트릭스 사이의 계면결합력을 증가시킨 것으로 판단된다.
In this work, the effect of fiber array direction including 0°, 0°/90°, 0°/45°/-45° was investigated for mechanical properties of basalt fiber-reinforced composites. Mechanical properties of the composites were studied using interlaminar shear strength (ILSS) and critical stress intensity factor (KIC) measurements. The cross-section morphologies of basalt fiber-reinforced epoxy composites were observed by scanning electron microscope (SEM). Also, the surface properties of basalt fibers were determined by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). From the results, it was observed that acid treated basalt fiber-reinforced composites showed significantly higher mechanical interfacial properties than those of untreated basalt fiber-reinforced composites. These results indicated that the hydroxyl functional groups of basalt fibers lead to the improvement of the mechanical interfacial properties of basalt fibers/epoxy composites in the all array direction.
  1. Dharmawan F, Simpson G, Herszberg I, John S, Compos. Struct., 75, 328 (2006)
  2. Huh Y, Jin JK, Fiber. Polym., 40, 139 (2007)
  3. Chawla KK, Composite Materials, Springer- Verlag, New York, USA, p 58 (1987)
  4. Davis DC, Wikerson JW, Zhu J, Ayewah DOO, Compos. Struct., 92, 2653 (2010)
  5. Park SJ, Interfacial Forces and Fields: Theory and Applications, Hsu JP, Editor, Marcel Dekker, New York (1999)
  6. Kim Y, Lim J, Korean J. Mater. Res., 2, 133 (1992)
  7. Kim Y, Kwon I, Lim J, Chung S, Korean J. Mater. Res., 3, 84 (1993)
  8. Ochola RO, Marcus K, Nurick GN, Franz T, Compos. Struct., 63, 455 (2004)
  9. Pereira AB, de Morais AB, de Moura MFSF, Magalhaes AG, Composites(A), 36, 1119 (2005)
  10. Lee J, Transactions of KSAE, 4, 206 (1996)
  11. Kim Y, Transactions of KSAE, 17, 15 (2009)
  12. Anirudhan TS, Suchithra PS, J. Ind. Eng. Chem., 16(1), 130 (2010)
  13. Qu XF, Zheng JT, Zhang YZ, J. Colloid Interface Sci., 309(2), 429 (2007)
  14. Ko KR, Yang BH, Ryu SK, HWAHAK KONGHAK, 41(3), 307 (2003)
  15. Fukunaga A, Ueda S, Compos. Sci. Tech., 60, 249 (2000)
  16. Hong MS, Bae KM, Choi WK, Lee HS, Park SJ, An KH, Kim BJ, Appl. Chem. Eng., 23(3), 313 (2012)
  17. Chun SH, Eom WS, Kim HD, Fiber. Polym., 50 (2013)
  18. Park SJ, Oh JS, Lee JR, Rhee KY, J. Korean Soc. Compos. Mater., 16, 25 (2003)
  19. El Didamon H, Abdel Gawwad HA, HBRC J., 8, 170 (2012)
  20. Saikia BJ, Parthasarathy G, J. Mod. Phys., 1, 206 (2010)
  21. Baklanova NI, Cement Concrete Res., 53, 1 (2013)
  22. Ryu SK, Park BJ, Park SJ, J. Colloid Interface Sci., 215(1), 167 (1999)
  23. Yong DK, Choi HN, Yang JW, Lee SG, J. Adhes. Interf., 13, 24 (2012)
  24. Park SJ, Zhu L, Jin FL, Bull. Korean Chem. Soc., 33, 2513 (2012)
  25. King TR, Adams DF, Buttry DA, Composites, 22, 380 (1991)
  26. Lee JR, Heo GY, Park SJ, Polym.(Korea), 26(1), 80 (2002)
  27. Park SJ, Jang YS, Rhee KY, J. Colloid Interface Sci., 245(2), 383 (2002)
  28. George GA, John NS, Friend G, J. Appl. Polym. Sci., 42, 643 (1991)
  29. Tae YI, Yun YS, Kwon OH, J. KIIS, 17, 25 (2002)
  30. Kim TS, Song SH, J. Korean Soc. Precis. Eng., 01, 1402 (2003)
  31. Yim YJ, Seo MK, Kim HY, Park SJ, Polym.(Korea), 36(4), 494 (2012)
  32. Park SJ, Jang YS, J. Colloid Interface Sci., 237(1), 91 (2001)
  33. Park SJ, Jeong HJ, Nah CW, Mater. Sci. Eng. A. Struct. Mater., 385, 13 (2004)