화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.6, 947-955, November, 2015
전자빔을 조사한 미더덕 유래 셀룰로오스 유도막의 특성
Electron Beam Irradiation to the Styela Clava Derived Cellulose Membrane
E-mail:
초록
셀룰로오스는 탄소와 수소 성분으로 이루어진 탄수화물 복합체로서 β-글루코오스 성분으로 이루어진 식물 세포벽의 주된 구성성분이다. 미더덕의 피부 각질에서 개발한 동물성 셀룰로오스 유도막에 1-2 MeV 에너지의 전자빔을 조사하여 C-C 결합보다 C-O 결합이 보다 증가함을 확인하였고, 여러 관련된 결과를 바탕으로 전자빔 조사에 의해 미세소관을 구성하는 셀룰로오스 미세원섬유들의 탈중합 과정을 일으킬 수 있었다. 셀룰로오스 합성복합체가 이동함으로써 셀룰로오스 섬유소들을 균일하고 미세하게 변형시킴으로써 골유도재생술을 위한 얇은 μm 단위의 의료용 유도막으로 활용이 가능할 것으로 사료된다.
Cellulose is the carbohydrate polymer composed of carbon, hydrogen and β-glucose, and the main composition of plant cell walls. The aim of this study is to evaluate the effect and potential of 1-2 MeV electron beam (E-beam) irradiation to the sea squirt derived cellulose membrane (CM) from Styela clava, called non-native tunicate. C-O bonding was increased than C-C bonding, and several related results showed depolymerization of cellulose microfibrils composed of microtubles. Cross-linking cellulose protein (CCP) was lost after E-beam irradiation, and so thin and delicate cellulose fibrils were detached each other by moving cellulose synthase complex. The potential of this cellulose polymer as a thin μm thickness medical membrane for the guided bone regeneration can be suggested.
  1. Kim SM, Lee JH, Choung PH, Lee SK, Tissue Eng. Regen. Med., 5, 959 (2008)
  2. Dahlin C, Linde A, Gottlow J, Nyman S, Plast. Reconstr. Surg., 81, 672 (1988)
  3. Lim HJ, Oh EJ, Choi JH, Chung HY, Ghim HD, Polym.(Korea), 36(4), 401 (2012)
  4. Kim SM, Lee JH, Jo JA, Lee SC, Lee SK, J. Kor. Oral. Maxillofac. Surg., 31, 440 (2005)
  5. Kim SM, Eo MY, Park JM, Myoung H, Lee JH, Park YI, Byun DJ, Lee SK, Tissue Eng. Regen. Med., 7, 191 (2010)
  6. Kim SM, Eo MY, Park JM, Myoung H, Lee JH, Park YI, Byun DJ, Lee SK, Tissue Eng. Regen. Med., 7, 191 (2010)
  7. Kim SM, Park JM, Kang TY, Kim YS, Kim SK, Cellulose, 20, 655 (2013)
  8. Ponader S, Vairaktaris E, Heinl P, Wilmowsky CV, Rottmair A, Korner C, Singer RF, Holst S, Schlegel KA, Neukam FW, Nkenke E, J. Biomed. Mater. Res., 84, 1111 (2008)
  9. Kim SM, Eo MY, Kang JY, Myoung H, Lee JH. Cho HJ, Yea KH, Lee BC, Tissue Eng. Regen. Med., 9, 24 (2012)
  10. Fray ME, Bartkowiak A, Prowans P, Slonecki J, J. Mater. Sci., 11, 757 (2000)
  11. Rinne KT, Boettgerr T, Loader NJ, Robertson I, Switsur VR, Waterhouse JS, Chem. Geol., 222, 75 (2005)
  12. Yuan J, Zhang J, Zang X, Shen J, Lin S, Colloids Surf. B: Biointerfaces, 30, 147 (2003)
  13. Clark DT, Pure Appl. Chem., 57, 941 (1985)
  14. Johansson LS, Campbell JM, Koljonen K, Strnius P, Appl. Surf. Sci., 144, 92 (1999)
  15. Delmer DP, Annu. Rev. Plant. Physiol. Plant. Mol. Biol., 50, 245 (1999)
  16. Kimura S, Kondo T, J. Plant. Res., 115, 297 (2002)
  17. Bora U, Sharma P, Kanna K, Nahar P, J. Biotechnol., 126, 220 (2006)
  18. Henniges U, Okubayashi S, Rosenau T, Potthast A, Biomacromolecules, 13(12), 4171 (2012)
  19. Edward I, Aleksandra K, Halina S, Wlodzimierz M, Rad. Phys. Chem., 63, 253 (2002)
  20. Mintier AM, Foley DM, J. Food Prot., 69, 570 (2006)
  21. Mark D, Arthur S, Wiliam W, Kun C, Mellony M, Jessica S, Richard AG, Marshall RC, Rad. Phys. Chem., 78, 539 (2009)
  22. lberti AA, Bertini S, Gastaldi G, Lannaccone N, Macciantelli D, Tom G, Vismara E, Eur. Polym. J., 41, 1787 (2005)
  23. Baek EJ, Shin BK, Nho YC, Lim YM, Park JS, Park JS, Huh KM, Polym.(Korea), 36(2), 182 (2012)
  24. Borsa J, Toth T, Takacs E, Hargittai P, Eur. Rad. Phys. Chem., 67, 509 (2003)
  25. Kang DW, Kuk IS, Jung CH, Hwang IT, Choi JH, Nho YC, Mun S, Lee YM, Polym.(Korea), 35(2), 157 (2011)
  26. Bouchard J, Methot M, Jordan B, Cellulose, 13, 601 (2006)
  27. Levy I, Shoseyov O, Biotechnol. Adv., 20, 191 (2002)
  28. Linder M, Teeri TT, J. Biotechnol., 57, 15 (1997)
  29. Lee W, Jung WG, Sung YJ, J. Korea TAPPI., 45, 56 (2013)
  30. Sun H, Wang X, Zhang L, Polym.(Korea), 38(4), 464 (2014)