Polymer(Korea), Vol.39, No.6, 947-955, November, 2015
전자빔을 조사한 미더덕 유래 셀룰로오스 유도막의 특성
Electron Beam Irradiation to the Styela Clava Derived Cellulose Membrane
E-mail:
초록
셀룰로오스는 탄소와 수소 성분으로 이루어진 탄수화물 복합체로서 β-글루코오스 성분으로 이루어진 식물 세포벽의 주된 구성성분이다. 미더덕의 피부 각질에서 개발한 동물성 셀룰로오스 유도막에 1-2 MeV 에너지의 전자빔을 조사하여 C-C 결합보다 C-O 결합이 보다 증가함을 확인하였고, 여러 관련된 결과를 바탕으로 전자빔 조사에 의해 미세소관을 구성하는 셀룰로오스 미세원섬유들의 탈중합 과정을 일으킬 수 있었다. 셀룰로오스 합성복합체가 이동함으로써 셀룰로오스 섬유소들을 균일하고 미세하게 변형시킴으로써 골유도재생술을 위한 얇은 μm 단위의 의료용 유도막으로 활용이 가능할 것으로 사료된다.
Cellulose is the carbohydrate polymer composed of carbon, hydrogen and β-glucose, and the main composition of plant cell walls. The aim of this study is to evaluate the effect and potential of 1-2 MeV electron beam (E-beam) irradiation to the sea squirt derived cellulose membrane (CM) from Styela clava, called non-native tunicate. C-O bonding was increased than C-C bonding, and several related results showed depolymerization of cellulose microfibrils composed of microtubles. Cross-linking cellulose protein (CCP) was lost after E-beam irradiation, and so thin and delicate cellulose fibrils were detached each other by moving cellulose synthase complex. The potential of this cellulose polymer as a thin μm thickness medical membrane for the guided bone regeneration can be suggested.
Keywords:cellulose crosslinking protein (CCP);cellulose membrane (CM);depolymerization;electron beam (E-beam) irradiation;guided bone regeneration (GBR)
- Kim SM, Lee JH, Choung PH, Lee SK, Tissue Eng. Regen. Med., 5, 959 (2008)
- Dahlin C, Linde A, Gottlow J, Nyman S, Plast. Reconstr. Surg., 81, 672 (1988)
- Lim HJ, Oh EJ, Choi JH, Chung HY, Ghim HD, Polym.(Korea), 36(4), 401 (2012)
- Kim SM, Lee JH, Jo JA, Lee SC, Lee SK, J. Kor. Oral. Maxillofac. Surg., 31, 440 (2005)
- Kim SM, Eo MY, Park JM, Myoung H, Lee JH, Park YI, Byun DJ, Lee SK, Tissue Eng. Regen. Med., 7, 191 (2010)
- Kim SM, Eo MY, Park JM, Myoung H, Lee JH, Park YI, Byun DJ, Lee SK, Tissue Eng. Regen. Med., 7, 191 (2010)
- Kim SM, Park JM, Kang TY, Kim YS, Kim SK, Cellulose, 20, 655 (2013)
- Ponader S, Vairaktaris E, Heinl P, Wilmowsky CV, Rottmair A, Korner C, Singer RF, Holst S, Schlegel KA, Neukam FW, Nkenke E, J. Biomed. Mater. Res., 84, 1111 (2008)
- Kim SM, Eo MY, Kang JY, Myoung H, Lee JH. Cho HJ, Yea KH, Lee BC, Tissue Eng. Regen. Med., 9, 24 (2012)
- Fray ME, Bartkowiak A, Prowans P, Slonecki J, J. Mater. Sci., 11, 757 (2000)
- Rinne KT, Boettgerr T, Loader NJ, Robertson I, Switsur VR, Waterhouse JS, Chem. Geol., 222, 75 (2005)
- Yuan J, Zhang J, Zang X, Shen J, Lin S, Colloids Surf. B: Biointerfaces, 30, 147 (2003)
- Clark DT, Pure Appl. Chem., 57, 941 (1985)
- Johansson LS, Campbell JM, Koljonen K, Strnius P, Appl. Surf. Sci., 144, 92 (1999)
- Delmer DP, Annu. Rev. Plant. Physiol. Plant. Mol. Biol., 50, 245 (1999)
- Kimura S, Kondo T, J. Plant. Res., 115, 297 (2002)
- Bora U, Sharma P, Kanna K, Nahar P, J. Biotechnol., 126, 220 (2006)
- Henniges U, Okubayashi S, Rosenau T, Potthast A, Biomacromolecules, 13(12), 4171 (2012)
- Edward I, Aleksandra K, Halina S, Wlodzimierz M, Rad. Phys. Chem., 63, 253 (2002)
- Mintier AM, Foley DM, J. Food Prot., 69, 570 (2006)
- Mark D, Arthur S, Wiliam W, Kun C, Mellony M, Jessica S, Richard AG, Marshall RC, Rad. Phys. Chem., 78, 539 (2009)
- lberti AA, Bertini S, Gastaldi G, Lannaccone N, Macciantelli D, Tom G, Vismara E, Eur. Polym. J., 41, 1787 (2005)
- Baek EJ, Shin BK, Nho YC, Lim YM, Park JS, Park JS, Huh KM, Polym.(Korea), 36(2), 182 (2012)
- Borsa J, Toth T, Takacs E, Hargittai P, Eur. Rad. Phys. Chem., 67, 509 (2003)
- Kang DW, Kuk IS, Jung CH, Hwang IT, Choi JH, Nho YC, Mun S, Lee YM, Polym.(Korea), 35(2), 157 (2011)
- Bouchard J, Methot M, Jordan B, Cellulose, 13, 601 (2006)
- Levy I, Shoseyov O, Biotechnol. Adv., 20, 191 (2002)
- Linder M, Teeri TT, J. Biotechnol., 57, 15 (1997)
- Lee W, Jung WG, Sung YJ, J. Korea TAPPI., 45, 56 (2013)
- Sun H, Wang X, Zhang L, Polym.(Korea), 38(4), 464 (2014)