Applied Chemistry for Engineering, Vol.27, No.1, 92-100, February, 2016
플라즈마가 결합된 탄화수소 선택적 촉매환원 공정에서 질소산화물(NOx)의 저감
Removal of Nitrogen Oxides Using Hydrocarbon Selective Catalytic Reduction Coupled with Plasma
E-mail:
초록
플라즈마와 선택적 촉매환원법이 결합된 복합공정을 이용하여 저온에서의 질소산화물(NOx) 저감에 대해 조사하였다. 플라즈마와 촉매가 직접 상호작용을 할 수 있도록 촉매 충진층에서 플라즈마가 생성되도록 하였다. 반응온도, 촉매의 형태, 환원제인 n-헵테인의 농도, 산소함량, 수분함량 및 에너지밀도의 변화가 NOx 전환효율에 미치는 영향에 대해 살펴보았다. 반응온도 250 ℃, 에너지밀도 42 J L-1 조건에서, 복합공정의 NOx 전환효율은 선형의 Ag 촉매(Ag(nanowire)/γ-Al2O3)와 구형의 Ag 촉매(Ag (sphere)/γ-Al2O3)를 사용한 경우에 각각 83%와 69%로 나타났으며, 플라즈마를 결합하지 않았을 때는 같은 조건에서 선형의 Ag 촉매를 사용해도 약 30%의 낮은 NOx 전환효율을 보였다. 플라즈마에 의한 촉매의 성능 향상은 플라즈마의 산화작용에 의해 NO가 반응성이 우수한 NO2로 전환되고, n-헵테인이 부분 산화되어 환원력이 우수한 중간생성물을 발생시켜 선택적 환원반응을 촉진시켰기 때문이다. 에너지밀도의 증가에 따라 NOx 전환효율이 증가하는 경향을 보였으며, n-헵테인의 농도를 증가시킬수록 NOx 전환효율이 높아졌으나 C1/NOx 비가 5 이상이 되면 더 이상 NOx 전환효율이 증가되지는 않았다. 수분은 NOx와 경쟁흡착 관계에 있으므로 NOx전환효율에 큰 영향을 미치며, 수분함량이 높을 경우 NOx 전환효율이 감소하는 현상을 보였다. 산소농도가 3~15%로 증가할수록 NO2 및 부분 산화 탄화수소의 생성 촉진으로 NOx 전환효율이 향상되었으며, 특히 낮은 에너지 밀도에서 NOx 전환효율 차이가 큰 것으로 나타났다.
Low-temperature conversion of nitrogen oxides using plasma-assisted hydrocarbon selective catalytic reduction of (HC-SCR) was investigated. Plasma was created in the catalyst-packed bed so that it could directly interact with the catalyst. The effect of the reaction temperature, the shape of catalyst, the concentration of n-heptane as a reducing agent, the oxygen content, the water vapor content and the energy density on NOx removal was examined. NOx conversion efficiencies achieved with the plasma-catalytic hybrid process at a temperature of 250 ℃ and an specific energy input (SIE) of 42 J L-1 were 83% and 69% for one-dimensional Ag catalyst (Ag (nanowire)/γ-Al2O3) and spherical Ag catalyst (Ag (sphere)/γ-Al2O3), respectively, whereas that obtained with the catalyst-alone was considerably lower (about 30%) even with Ag (nanowire)/γ-Al2O3 under the same condition. The enhanced catalytic activity towards NOx conversion in the presence of plasma can be explained by the formation of more reactive NO2 species and partially oxidized hydrocarbon intermediates from the oxidation of NO and n-heptane under plasma discharge. Increasing the SIE tended to improve NOx conversion efficiency, and so did the increase in the n-heptane concentration; however, a further increase in the n-heptane concentration beyond C1/NOx ratio of 5 did not improve the NOx conversion efficiency any more. The increase in the humidity affected negatively the NOx conversion efficiency, resulting in lowering the NOx conversion efficiency at the higher water vapor content, because water molecules competed with NOx species for the same active site. The NOx conversion efficiency increased with increasing the oxygen content from 3 to 15%, in particular at low SIE values, because the formation of NO2 and partially oxidized hydrocarbon intermediates was facilitated.
- Lee J, Park J, Kim S, Yoo S, Kim J, Trans. Korean Hydrogen and New Energy Society, 21, 519 (2010)
- Kim M, Lee C, Analyt. Sci. Technol., 18, 139 (2005)
- Kim SS, Jang DH, Hong SC, Clean Technol., 17(3), 225 (2011)
- Mok YS, Ravi V, Kang HC, Rajanikanth BS, IEEE Trans. Plasma Sci., 31, 157 (2003)
- Sun WY, Wang QY, Ding SL, Su SJ, Jiang WJ, Zhu EG, Sep. Purif. Technol., 118, 576 (2013)
- Lee JO, Song YH, J. Korean Ind. Eng. Chem., 17(4), 409 (2006)
- Yoon DY, Park JH, Kang HC, Kim PS, Nam IS, Yeo GK, Kil JK, Cha MS, Appl. Catal. B: Environ., 101(3-4), 275 (2011)
- Worch D, Suprun W, Glaser R, Catal. Today, 176(1), 309 (2011)
- Gervasini A, Carniti P, Ragaini V, Appl. Catal. B: Environ., 22(3), 201 (1999)
- Nie Y, Wang J, Zhong K, Wang L, Guan Z, IEEE Trans. Plasma Sci., 35, 663 (2007)
- Meng B, Zhao ZB, Wang XZ, Liang JJ, Qiu JS, Appl. Catal. B: Environ., 129, 491 (2013)
- Ihm TH, Jo JO, Hyun YJ, Mok YS, J. Korean Inst. Gas, 19, 20 (2015)
- Miessner H, Francke KP, Rudolph R, Appl. Catal. B: Environ., 36(1), 53 (2002)
- Tonkyn RG, Barlow SE, Hoard JW, Appl. Catal. B: Environ., 40(3), 207 (2003)
- Rappe KG, Hoard JW, Aardahl CL, Park PW, Peden CHF, Tran DN, Catal. Today, 89(1-2), 143 (2004)
- Fan HY, Shi C, Li XS, Yang XF, Xu Y, Zhu AM, Plasma Chem. Plasma Process., 29(1), 43 (2009)
- Furusawa T, Seshan K, Lercher JA, Lefferts L, Aika K, Appl. Catal. B: Environ., 37(3), 205 (2002)
- He H, Li Y, Zhang X, Yu Y, Zhang C, Appl. Catal. A: Gen., 375, 285 (2010)
- Shimizu K, Satsuma A, Hattori T, Appl. Catal. B: Environ., 25(4), 239 (2000)
- Wagner HE, Brandenburg R, Kozlov KV, Sonnenfeld A, Michel P, Behnke JF, Vacuum, 71, 417 (2003)
- Sudhakaran MSP, Jo JO, Trinh QH, Mok YS, Appl. Chem. Eng., 26(4), 495 (2015)
- Sitshebo SWT, HC-SCR of NOx Emissions Over Ag-Al2O3 Catalysts Using Diesel Fuel as a Reductant, PhD Dissertation, The University of Birmingham, Birmingham, United Kingdom (2010).
- Dorai R, Kushner MJ, J. Phys. D-Appl. Phys., 34, 574 (2001)
- Rajanikanth BS, Srinivasan AD, IEEE Trans. Dielectr. Electr. Insul., 14, 302 (2007)
- Pei Y, Chen X, Xiong D, Liao S, Wang G, PLoS One, 8, e81627 (2013)
- Tang XJ, Feng FD, Ye LL, Zhang XM, Huang YF, Liu Z, Yan KP, Catal. Today, 211, 39 (2013)
- Jiang L, Zhu R, Mao Y, Chen J, Zhang L, Int. J. Environ. Res. Public Health, 12, 1334 (2015)
- Mallard WG, Westley F, Herron JT, Hampso R, NIST Chemical Kinetics Database: Version 2Q98. Gaithersburg, MD, USA (1998).
- Byun JY, J. Microelectronics Packing Society, 15, 41 (2008)
- Cho SH, Youn SW, Kang CG, Observation of Growth Behavior of Induced Hillock for Nano/Micro Patterning on Surface of Borosilicate with Etching Time and Load, Proceedings of the Korean Society for Technology of Plasticy Autumn Conference, October 11-14, Seoul Korea (2005).
- Kim HT, Glass Thinning by Fluoride Based Compounds Solution with Low Hydrofluoric acid Concentration, Master Dissertation, Hoseo University, Asan, Korea (2009).
- Techno Semichem Corporation, Etching Composition for LCD Glass, KOR Patent 0052475 (2005).
- Bellman RA, Davis RW, Lapp JC, Walton RM, Chemical Durability of EAGLE XG™ in LCD Dry Etch Processes, Corning Inc, Sullivan Park, Corning, P-48.2, NY, USA (2005).
- Iliescu C, Chena B, Miao J, Sens. Actuators A-Phys., 143, 154 (2008)
- Dongwoo Fine-Chem, Etching solution composition, KOR Patent 0061610 (2008).
- Takoma technology corporation, Etching composition, KOR Patent 0112782 (2009).
- Chemtronics Corporation, Etchant Composition for Glass Substrate, KOR Patent 0124792 (2007).
- Exax Corporation, Echant composition for glass of flat panel display, KOR Patent 0082540 (2007).