화학공학소재연구정보센터
Polymer(Korea), Vol.23, No.4, 507-516, July, 1999
Active Complex 형성을 고려한 Biphenyl계 에폭시/페놀 노볼락 수지 조성물의 경화 속도 모델
Cure Kinetic Model of Biphenyl-Type Epoxy/Phenol Novolac Resin System Considering Active Complex Formation
E-mail:
초록
Triphenylphosphine 촉매하에서의 biphenyl계 에폭시/페놀 노볼락 수지 시스템의 경화 반응 속도식을 등온 경화 조건에서 시차주사열량계를 이용하여 분석하였다. 본 연구의 에폭시 수지 시스템의 경화 반응은 에폭시-페놀-촉매 3분자의 반응으로 형서된 active complex의 형성을 고려함으로써 설명할 수 있었으며, 자체촉매 반응과 n차 반응 모델을 조합함으로써 효과적으로 예측할 수 있었다. 반응 후반의 경화 반응을 설명하기 위해서 제안된 화학 반응 모델에 확산 인자를 도입하였으며, 이로부터 모든 에폭시 전화 영역에서의 반응 속도를 예측할 수 있었다.
The investigation of cure kinetics of biphenyl-type epoxy(4,4-diglycidyloxy-3,3, 5,5-tetramethyl biphenyl)/phenol novolac resin system with triphenylphosphine catalyst was performed by differential scanning calorimeter using an isothermal approach. The cure reaction of the system could be explained by considering the formation of epoxy-phenol-catalyst trimolecular active complex and effectively described by combining autocatalytic and nth order model. To describe the cure reaction in the latter stage, a diffusion factor has been used. By combining the proposed kinetic model with a diffusion factor, it is possible to predict the cure kinetics over the whole range of conversion.
  1. Prime B, "Thermal Characteristics of Polymeric Materials," ed. by E. Turi, Chapter 5, p. 436, Academic Press, Inc., New York (1981)
  2. Oh KH, Moon KS, Ryu JH, Kim JM, Kim JG, Polym.(Korea), 21(5), 812 (1997)
  3. Kim HY, Moon KS, Han S, Kim JM, Ryu JH, Yoon HG, Polym.(Korea), 23(1), 105 (1999)
  4. Manzione LT, "Plastic Packaging of Microelectronics Devices," p. 86, Van Nostrand Reinhold, New York, U.S.A. (1990)
  5. Sorokin MF, Shode LG, Zh. Org. Khim., 2, 1447 (1966)
  6. Idem, Zh. Org. Khim., 2, 1452 (1966)
  7. Hale A, "Epoxy Used in the Encapsulation of Integrated Circuits: Chemistry, Rheology, Glass Transition, And Reactive Processing," Ph.D. Thesis, University of Minnesota (1988)
  8. Han S, Kim WG, Yoon HG, Moon TJ, J. Polym. Sci. A: Polym. Chem., 36(5), 773 (1998) 
  9. Han S, Yoon HG, Suh KS, Kim WG, Moon TJ, J. Polym. Sci. A: Polym. Chem., 37(6), 713 (1999) 
  10. Kim WG, Lee JY, Park KY, J. Polym. Sci. A: Polym. Chem., 31, 633 (1993) 
  11. Biernath RW, Soane DS, "Contemporary Topics in Polymer Science," eds. by J.C. Salamone and J. Riffle, Vol. 7, p. 103, Plenum Press, New York (1992)
  12. Han S, Kim WG, Hwang SD, Yoon HG, Suh KS, Moon TJ, Polym.(Korea), 22(5), 691 (1998)
  13. Kamal MR, Polym. Eng. Sci., 14, 23 (1974)
  14. Banthia AK, McGrath JE, ACS Polym. Prepr. Div. Polym. Chem., 20, 629 (1979)
  15. Han S, Kim WG, Yoon HG, Moon TJ, J. Appl. Polym. Sci., 68(7), 1125 (1998) 
  16. Idem, Bull. Korean Chem. Soc., 18, 11 (1997)
  17. Chern CS, Poehlein GW, Polym. Eng. Sci., 27, 782 (1987)
  18. Cole KC, Hechler JJ, Noel D, Macromolecules, 24, 3098 (1991) 
  19. Venditti RA, Gillham JK, J. Appl. Polym. Sci., 64(1), 3 (1997) 
  20. Wisanrakkit G, Gillham JK, J. Appl. Polym. Sci., 41, 2885 (1990) 
  21. Barral L, Cano J, Lopez AJ, Lopez J, Nogueira P, Ramirez C, J. Appl. Polym. Sci., 56(9), 1029 (1995)