화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.45, 189-196, January, 2017
Highly efficient full solar spectrum (UV-vis-NIR) photocatalytic performance of Ag2S quantum dot/TiO2 nanobelt heterostructures
E-mail:,
Finding a photocatalyst that can utilize the full solar spectrum is paramount importance in photocatalysis. Assembling TiO2 with a narrow bandgap semiconductor to form a heterostructure which can harvest the light from UV to near-infrared (NIR) region would be ideal for photocatalysis. Here, we report the synthesis of Ag2S quantum dots (QDs)/TiO2 nanobelt heterostructures to display the UV-visible-NIR full spectrum photocatalytic property. The enhanced photocatalytic performance is ascribed to the efficient charge separation properties of the heterostructure formed by intimate contact between Ag2S and TiO2, and efficient visible and NIR harvesting of Ag2S QDs on the surface of TiO2 nanobelts.
  1. Momeni MM, Nazari Z, Ceram. Int., 42, 8691 (2016)
  2. Sang Y, Liu H, Umar A, ChemCatChem, 7, 559 (2015)
  3. Tian J, Hu XL, Wei N, Zhou YL, Xu XH, Cui HZ, Liu H, Sol. Energy Mater. Sol. Cells, 151, 7 (2016)
  4. Momeni MM, Ghayeb Y, J. Mol. Catal. A-Chem., 417, 107 (2016)
  5. Momeni MM, Ghayeb Y, J. Alloy. Compd., 637, 393 (2015)
  6. Tian J, Leng YH, Cui HZ, Liu H, J. Hazard. Mater., 299, 165 (2015)
  7. Momeni MM, Ghayeb Y, J. Solid State Electrochem., 20, 683 (2016)
  8. Gannoruwa A, Niroshan K, Ileperuma OA, Bandara J, Int. J. Hydrog. Energy, 39(28), 15411 (2014)
  9. Zhang F, Zhang CL, Peng HY, Cong HP, Qian HS, Part. Part. Syst. Charact., 33(5), 248 (2016)
  10. Wang G, Huang B, Ma X, Wang Z, Qin X, Zhang X, Dai Y, Whangbo MH, Angew. Chem.-Int. Edit., 125, 4910 (2013)
  11. Tian J, Zhao Z, Kumar A, Boughton RI, Liu H, Chem. Soc. Rev., 43, 6920 (2014)
  12. Hu F, Li C, Zhang Y, Wang M, Wu D, Wang Q, Nano Res., 8, 1637 (2015)
  13. Ong WL, Lim YF, Ong JLT, Ho GW, J. Mater. Chem. A, 3, 6509 (2015)
  14. Khanchandani S, Srivastava PK, Kumar S, Ghosh S, Ganguli AK, Inorg. Chem., 53(17), 8902 (2014)
  15. Jiang W, Wu Z, Yue X, Yuan S, Lu H, Liang B, RSC Adv., 5, 24064 (2015)
  16. Zhu L, Park CY, Ghosh T, Oh WC, Asian J. Chem., 25, 726 (2013)
  17. Li Z, Xiong S, Wang G, Xie Z, Zhang Z, Sci. Rep., 6 (2016)
  18. Chen G, Ji S, Sang Y, Chang S, Wang Y, Hao P, Claverie J, Liu H, Yu G, Nanoscale, 7, 3117 (2015)
  19. Wang H, Guan C, Wang X, Fan HJ, Small, 11, 1470 (2015)
  20. Chen Y, Dong L, Zhao M, Dong H, Chem. Commun., 50, 11514 (2014)
  21. Ren R, Wen Z, Cui S, Hou Y, Guo X, Chen J, Sci. Rep., 5 (2015)
  22. Kumar S, Singh AP, Bera C, Thirumal M, Mehta BR, Ganguli AK, ChemSusChem, 9, 1850 (2016)
  23. Zhang J, Qian LS, Fu W, Xi JH, Ji ZG, J. Am. Ceram. Soc., 97(8), 2615 (2014)
  24. Mao M, Mei L, Guo D, Wu L, Zhang D, Li Q, Wang T, Nanoscale, 6, 12350 (2014)
  25. Xu L, Zhang D, Ming L, Jiao Y, Chen F, Phys. Chem. Chem. Phys., 16, 19358 (2014)
  26. Zhang Y, Yuan S, Zhao Y, Wang H, He C, J. Mater. Chem. A, 2, 7897 (2014)
  27. Jayanthi C, Dhanapandian S, Murali KR, Front. Mater. Sci., 7, 379 (2013)
  28. Li Y, Li L, Gong Y, Bai S, Ju H, Wang C, Xu Q, Zhu J, Jiang J, Xiong Y, Nano Res., 8, 3621 (2015)
  29. Zhu L, Hong M, Ho GW, Nano Energy, 11, 28 (2015)
  30. Ong WL, Gao M, Ho GW, Nanoscale, 5, 11283 (2013)
  31. Tian J, Li J, Wei N, Xu X, Cui H, Liu H, Ceram. Int., 42, 1611 (2016)
  32. Shen S, Zhang Y, Peng L, Du Y, Wang Q, Angew. Chem.-Int. Edit., 123, 7253 (2011)
  33. Huang S, He Q, Zai J, Wang M, Li X, Li B, Qian X, Chem. Commun., 51, 8950 (2015)
  34. Mao C, Zuo F, Hou Y, Bu X, Feng P, Angew. Chem.-Int. Edit., 53, 10485 (2014)
  35. Cui H, Zhao W, Yang C, Yin H, Lin T, Shan Y, Xie Y, Gu H, Huang F, J. Mater. Chem. A, 2, 8612 (2014)
  36. Boughalmi R, Boukhachem A, Amlouk M, Mater. Sci. Semicond. Process, 30, 218 (2015)