화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.47, 187-193, March, 2017
Enhancement of the electrochemical capacitance of TiOF2 obtained via control of the crystal structure
E-mail:
TiOF2 was successfully prepared as an electrochemical capacitor electrode material by novel method, which is NF3 treatment of a TiO2 precursor at controlled reaction temperatures to modulate its structure and surface properties. The crystal phase of TiOF2 changed to fluorine-doped anatase TiO2 upon increasing the NF3 treatment temperature. This structural change was induced to reduce the Ti3+ ratio of the TiOF2 surface. The specific capacitance of the TiOF2 phase treated by fluorination with NF3 gas at 580 °C was sevenfold higher than that of anatase TiO2 in this study. The enhanced capacitance of TiOF2 is expected to lead to a higher conductivity and charge transfer of the TiOF2 phase in comparison to anatase TiO2, which is primarily attributed to the higher Ti3+ ratio.
  1. Frackowiak E, Beguin F, Carbon, 39, 937 (2001)
  2. Park MS, Cho S, Jeong E, Lee YS, J. Ind. Eng. Chem., 22, 27 (2015)
  3. Jeong E, Jung MJ, Lee SG, Kim HG, Lee YS, J. Ind. Eng. Chem., 43, 78 (2016)
  4. Conway BE, Electrochemical Supercapacitors, Kluwer Academic, New York, 1999.
  5. Bruce P, Scrosati B, Tarascon JM, Angew. Chem.-Int. Edit., 47, 2930 (2008)
  6. Wang GX, Zhang BL, Yu ZL, Qu MZ, Solid State Ion., 176, 1169 (2005)
  7. Winter M, Brodd RJ, Carbon Lett., 16, 78 (2015)
  8. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W, Nat. Mater., 4(5), 366 (2005)
  9. Brezesinski T, Wang J, Polleux J, Dunn B, Tolbert SH, J. Am. Chem. Soc., 131(5), 1802 (2009)
  10. Wang YG, Zhang XG, Electrochim. Acta, 49(12), 1957 (2004)
  11. Salari M, Konstantinov K, Liu HK, J. Mater. Chem., 21, 5128 (2011)
  12. Xie Y, Zhou L, Huang C, Huang H, Lu J, Electrochim. Acta, 53(10), 3643 (2008)
  13. Fabregat-Santiago F, Barea EM, Bisquert J, Mor GK, Shankar K, Grimes CA, J. Am. Chem. Soc., 130(34), 11312 (2008)
  14. Xiao P, Liu D, Garcia BB, Sepehri S, Zhang Y, Cao G, Sens. Actuators B-Chem., 134, 367 (2008)
  15. Ju T, Lee H, Kang M, J. Ind. Eng. Chem., 20(5), 2636 (2014)
  16. Mole F, Wang J, Clayton DA, Xu CL, Pan SL, Langmuir, 28(28), 10610 (2012)
  17. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269 (2001)
  18. Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S, Appl. Catal. B: Environ., 42(4), 403 (2003)
  19. Irie H, Watanabe Y, Hashimoto K, J. Phys. Chem. B, 107(23), 5483 (2003)
  20. Gole JL, Stout JD, Burda C, Lou YB, Chen XB, J. Phys. Chem. B, 108(4), 1230 (2004)
  21. Abbas N, Shao GN, Haider MS, Imran SM, Park SS, Kim HT, J. Ind. Eng. Chem., 39, 112 (2016)
  22. Yamaki T, Umebayashi T, Sumita T, Yamamoto S, Maekawa M, Kawasuso A, Itoh H, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 206, 254 (2003)
  23. Wen CZ, Hu QH, Guo YN, Gong XQ, Qiao SZ, Yang HG, Chem. Commun., 47, 6138 (2011)
  24. Lv K, Yu J, Cui L, Chen S, Li M, J. Alloy. Compd., 509, 4557 (2011)
  25. Ashkarran AA, J. Theor. Appl. Phys., 4, 1 (2011)
  26. Zhu J, Zhang D, Bian Z, Li G, Huo Y, Lu Y, Li H, Chem. Commun., 36, 5394 (2009)
  27. Li D, Haneda H, Hishita S, Ohashi N, Chem. Mater., 17, 2588 (2005)
  28. Wang Z, Huang B, Dai Y, Zhang X, Qin X, Li Z, Zheng Z, Cheng H, Guo L, Cryst. Eng. Comm., 14, 4578 (2012)
  29. Lv YY, Yu LS, Huang HY, Liu HL, Feng YY, Appl. Surf. Sci., 255(23), 9548 (2009)
  30. Oh WC, Chen ML, Carbon. Sci., 8, 108 (2007)
  31. Lokshin EP, Sedneva TA, Russ. J. Appl. Chem., 79, 1238 (2006)
  32. Guillot J, Fabreguette F, Imhoff L, Heintz O, de Lucas MCM, Sacilotti M, Domenichini B, Bourgeois S, Appl. Surf. Sci., 177(4), 268 (2001)
  33. Kim MS, Jo WJ, Lee D, Baeck SH, Shin JH, Lee BC, Bull. Korean Chem. Soc., 34, 1397 (2013)
  34. Pelaez M, Cruz AA, Stathatos E, Falaras P, Dionysiou D, Catal. Today, 144, 19 (2009)
  35. Czoska AM, Livraghi S, Chiesa M, Giamello E, Agnoli S, Granozzi G, Finazzi E, Di Valentin C, Pacchioni G, J. Phys. Chem. C, 112, 8951 (2008)
  36. Yu JC, Yu J, Ho W, Jiang Z, Zhang L, Chem. Mater., 14, 3808 (2002)
  37. Salari M, Aboutalebi SH, Chidembo AT, Nevirkovets IP, Konstantinov K, Liu HK, Phys. Chem. Chem. Phys., 14, 4770 (2012)
  38. Rocquefelte X, Goubin F, Montardi Y, Viadere N, Demourgues A, Tressaud A, Whangbo MH, Jobic S, Inorg. Chem., 44(10), 3589 (2005)
  39. Zhang J, Mei G, Zhao S, Xie Z, ISIJ Int., 54, 553 (2014)
  40. Lozovaya OV, Tarasevich MR, Bogdanovskaya VA, Kasatkina IV, Shcherbakov AI, Prot. Met. Phys. Chem. Surf., 47, 48 (2011)
  41. Stoller MD, Park S, Zhu Y, An J, Ruoff RS, Nano Lett., 10, 3498 (2008)
  42. Zheng ZQ, Zhou XP, J. Am. Ceram. Soc., 96(11), 3504 (2013)
  43. Chuang CM, Huang CW, Teng HS, Ting JM, J. Electrochem. Soc., 157(5), K113 (2010)
  44. Xie YB, Zhou LM, Lu J, J. Mater. Sci., 44(11), 2907 (2009)
  45. Liu H, Cao Q, Fu LJ, Li C, Wu YP, Wu HQ, Electrochem. Commun., 8, 1553 (2006)