화학공학소재연구정보센터
Polymer(Korea), Vol.41, No.3, 452-459, May, 2017
제조 방법에 따른 70PC/30ABS/GO 복합체의 GO 분산성 및 기계적 물성
GO Dispersion and Mechanical Properties of 70PC/30ABS/GO Composites according to Fabrication Methods
E-mail:
초록
제조방법에 따른 폴리카보네이트(polycarbonate, PC)/아크릴로니트릴-부타디엔-스티렌 공중합체(acrylonitrilebutadiene- styrene copolymer, ABS)/그래핀 옥사이드(graphene oxide, GO) 복합체(composite)의 GO 분산성과 물성을 고찰하기 위해 이축압출기(twin screw extruder)를 이용하여 PC/ABS/GO 복합체를 제조하였다. 열역학적인 GO의 위치는 접촉각 측정과 젖음 계수를 이용하여 ABS 상내와 ABS-g-MA에 존재하려는 경향을 확인하였으며, 제조방법 에 상관없이 대부분의 GO가 ABS 상내에서 관측됨을 TEM 결과로 확인하였다. 인장강도(tensile strength)와 아이조 드 충격강도(Izod impact strength)를 비교한 결과 PC/GO 복합체를 이용한 PC-GO/ABS 복합체의 물성 개선효과가 우수하게 나타났다. PC/GO 복합체를 이용하여 스크류 속도를 변화시켜 제조한 PC-GO/ABS 복합체의 경우 스크류 속도가 증가함에 따라 인장강도와 충격강도가 소폭 증가함을 확인하였다. SEM과 TEM 결과로부터 스크류 속도가 증가할수록 압출기 내 체류시간이 작아 GO가 PC와 ABS 계면에 많이 분포되어 있는 것을 확인하였다.
PC/ABS/GO composites were fabricated using a twin screw extruder in order to study GO dispersion and the physical properties of polycarbonate (PC)/acrylonitrile-butadiene-styrene copolymer (ABS)/graphene oxide (GO) composites depending on fabrication methods. The position of the GO was thermodynamically identified by measurement of contact angle and the use of wetting coefficient. The GO tended to be located in the ABS phase and ABS-g-MA. In TEM images, most of the GO was located in the ABS phase regardless of fabrication methods. In comparisons of tensile strength and Izod impact strength, the physical properties of PC-GO/ABS composites using PC/GO composites were significantly improved. In PC-GO/ABS composites produced by using PC/GO composites, and changing screw rpm, tensile strength and impact strength slightly increased as screw rpm rose. In SEM and TEM images, it was confirmed that GOs were mostly dispersed in the PC and ABS interface due to the short residence time in the extruder as screw rpm rose.
  1. Park OK, Lee S, Ku BC, Lee JH, Polym. Sci. Technol., 22, 467 (2011)
  2. Xiong ZY, Wang L, Sun Y, Guo ZX, Yu J, Polymer, 54, 447 (2013)
  3. Mittal G, Dhand V, Rhee KY, Park SJ, Lee WR, J. Ind. Eng. Chem., 21, 11 (2015)
  4. Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
  5. Liu YT, Xie XM, Ye XY, Carbon, 49, 3529 (2011)
  6. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS, Adv. Mater., 22(35), 3906 (2010)
  7. Du J, Cheng HM, Macromol. Chem. Phys., 213, 1060 (2012)
  8. Ramesha GK, Sampath S, J. Phys. Chem. C, 113, 7985 (2009)
  9. Surudzic R, Jankovic A, Mitric M, Matic I, Juranic ZD, Zivkovic L, Miskovic-Stankovic V, Rhee KY, Park SJ, Hui D, J. Ind. Eng. Chem., 34, 250 (2016)
  10. Stankovich S, Kikin DA, Dommett GHB, Kohlhaas KM, Jimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS, Nature, 442, 282 (2006)
  11. Zhu J, Lim J, Lee CH, Joh HI, Kim HC, Park B, You NH, Lee S, J. Appl. Polym. Sci., 131, 40177 (2014)
  12. Yasmin A, Luo J, Daniel IM, Compos. Sci. Technol., 66, 1182 (2006)
  13. Kim ST, Choi HJ, Appl. Chem., 41, 2106 (2005)
  14. Ding P, Su S, Song N, Tang S, Liu Y, Shi L, Carbon, 66, 576 (2014)
  15. Song KH, Hong JH, Sung YT, Kim YH, Han MS, Yoon HG, Kim WN, Polym. Korea, 31, 283 (2010)
  16. Sun Y, Guo ZX, Yu J, Macromol. Mater. Eng., 295, 263 (2010)
  17. Chen J, Shi YY, Yang JH, Zhang N, Huang T, Chen C, Wang Y, Zhou ZW, J. Mater. Chem., 22, 22398 (2012)
  18. Pour RH, Hassan A, Soheilmoghaddam M, Bidsorkhi HC, Polym. Compos., 37, 1633 (2014)
  19. Mao C, Zhu Y, Jiang W, ACS Appl. Mater. Interfaces, 4, 5281 (2012)
  20. Park JY, Lee BY, Cha HJ, Kim YC, Appl. Chem. Eng., 26(2), 173 (2015)
  21. Huang J, Mao C, Zhu Y, Jiang W, Yang X, Carbon, 73, 267 (2014)
  22. Marcin W, Benedito A, Gimenez E, J. Appl. Polym. Sci., 131, 40271 (2014)
  23. Ren D, Zheng S, Wu F, Yang W, Liu Z, Yang M, J. Appl. Polym. Sci., 131, 39953 (2014)
  24. Cao Y, Zhang J, Feng J, Wu P, ACS Nano, 5, 5920 (2011)