Journal of Industrial and Engineering Chemistry, Vol.52, 338-348, August, 2017
Structure and biocompatibility of highly oriented poly(lactic acid) film produced by biaxial solid hot stretching
E-mail:
Highly oriented long-chain-branched poly(lactic acid) (LCB-PLA) film was fabricated through biaxial hot stretching in solid state. Compared with neat PLA, more homogeneous film with higher draw ratio can be obtained for LCB-PLA. With increasing draw ratio, the long period, lamellae thickness and grain size of LCB-PLA decreased, while the crystallinity increased. For LCB-PLA with draw ratio of 6*6, the tensile strength and elongation at break can reach up to 208 ± 6 MPa and 85% respectively. After drawing, the increasing content of -CH3 and C=O group on the surface of LCB-PLA film was beneficial for cell adhesion and growth on it.
Keywords:Poly(lactic acid) (PLA) film;Long chain branching;Biaxial orientation;Orientation structure;Biocompatibility
- Sin LT, Rahmat AR, Rahman WAWA, Polylactic Acid: PLA Biopolymer Technology and Applications, Elsevier, Oxford, UK, 2012.
- Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Filho RM, Biotechnol. Adv., 30, 321 (2012)
- Gandini A, Lacerda TM, Prog. Polym. Sci, 48, 1 (2015)
- Panyam J, Labhasetwar V, Adv. Drug Deliv. Rev., 55, 329 (2003)
- Woodruff MA, Hutmacher DW, Prog. Polym. Sci, 35, 1217 (2010)
- Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L, Drug Deliv., 11, 169 (2004)
- Lim LT, Auras R, Rubino M, Prog. Polym. Sci, 33, 820 (2008)
- Ward IM, Sweeney J, Mechanical Properties of Solid Polymers, Wiley, Chichester, New York, 1983.
- Ghazaryan G, Schaller R, Feldman K, Tervoort TA, J. Polym. Sci. B: Polym. Phys., 54(21), 2233 (2016)
- Robertson GL, Food Packaging: Principles and Practice, Blackwell Publishing Ltd, Oxford, UK, 2003.
- Yu L, Liu HS, Xie FW, Chen L, Li XX, Polym. Eng. Sci., 48(4), 634 (2008)
- Tsai CC, Wu RJ, Cheng HY, Polym. Degrad. Stabil., 95, 1292 (2010)
- Jariyasakoolroj P, Tashiro K, Wang H, Yamamoto H, Chinsirikul W, Kerddonfag N, Chirachanchai S, Polymer, 68, 234 (2015)
- Arnold JC, Dves OM, Yield Fract. Polym. (1997) 298.
- Ou X, Cakmak M, Polymer, 49(24), 5344 (2008)
- Li ZQ, Zhao XW, Ye L, Coates P, Caton-Rose F, Martyn M, Chem. Eng. J., 279, 767 (2015)
- Li ZQ, Zhao XW, Ye L, Coates P, Caton-Rose F, Martyn M, Polymer, 56, 523 (2015)
- Li Z, Zhao X, Ye L, J. Biomed. Mater. Res., 5, 1082 (2016)
- Liu X, Dever M, Fair N, Benson RS, J. Environ. Polym. Degrad., 5, 225 (1997)
- Najafi N, Heuzey MC, Carreau PJ, Polym. Degrad. Stabil., 97, 554 (2012)
- Lehermeier HJ, Dorgan JR, Polym. Eng. Sci., 41(12), 2172 (2001)
- Cailloux J, Perez OOS, Urquiza EAF, eXPRESS Polym. Lett., 3, 304 (2013)
- Gupta RK, Polymer and Composite Rheology, CRC Press, 2000.
- Cogswell FN, Trans. Soc. Rheol., 16, 383 (1972)
- Tadmor Z, Gogos CG, Principles of Polymer Processing, John Wiley & Sons, 2013.
- Khodabakhshi K, Ehsani M, Development and applications of sustainable polylactic acid parts, Handbook of Sustainable Polymers: Processing and Applications, Pan Stanford Publishing Pte. Lte, Singapore, 2016, pp. 397.
- Liu JY, Lou LJ, Yu W, Liao RG, Li RM, Zhou CX, Polymer, 51(22), 5186 (2010)
- Marubayashi H, Asai S, Sumita M, Macromolecules, 45(3), 1384 (2012)
- Zhang CM, Zhai TL, Turng LS, Dan Y, Ind. Eng. Chem. Res., 54(38), 9505 (2015)
- Ertel SI, Chilkoti A, Horbetti TA, Ratner B, J. Biomater. Sci.-Polym. Ed., 2, 163 (2012)
- Meaurio E, de Arenaza IM, Lizundia E, Sarasua JR, Macromolecules, 42(15), 5717 (2009)
- Lampin M, Waropuier-Clerout LC, Degrange M, Sigot-Luizard MF, J. Biomed. Mater. Res., 36, 99 (1997)