화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.52, 338-348, August, 2017
Structure and biocompatibility of highly oriented poly(lactic acid) film produced by biaxial solid hot stretching
E-mail:
Highly oriented long-chain-branched poly(lactic acid) (LCB-PLA) film was fabricated through biaxial hot stretching in solid state. Compared with neat PLA, more homogeneous film with higher draw ratio can be obtained for LCB-PLA. With increasing draw ratio, the long period, lamellae thickness and grain size of LCB-PLA decreased, while the crystallinity increased. For LCB-PLA with draw ratio of 6*6, the tensile strength and elongation at break can reach up to 208 ± 6 MPa and 85% respectively. After drawing, the increasing content of -CH3 and C=O group on the surface of LCB-PLA film was beneficial for cell adhesion and growth on it.
  1. Sin LT, Rahmat AR, Rahman WAWA, Polylactic Acid: PLA Biopolymer Technology and Applications, Elsevier, Oxford, UK, 2012.
  2. Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Filho RM, Biotechnol. Adv., 30, 321 (2012)
  3. Gandini A, Lacerda TM, Prog. Polym. Sci, 48, 1 (2015)
  4. Panyam J, Labhasetwar V, Adv. Drug Deliv. Rev., 55, 329 (2003)
  5. Woodruff MA, Hutmacher DW, Prog. Polym. Sci, 35, 1217 (2010)
  6. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L, Drug Deliv., 11, 169 (2004)
  7. Lim LT, Auras R, Rubino M, Prog. Polym. Sci, 33, 820 (2008)
  8. Ward IM, Sweeney J, Mechanical Properties of Solid Polymers, Wiley, Chichester, New York, 1983.
  9. Ghazaryan G, Schaller R, Feldman K, Tervoort TA, J. Polym. Sci. B: Polym. Phys., 54(21), 2233 (2016)
  10. Robertson GL, Food Packaging: Principles and Practice, Blackwell Publishing Ltd, Oxford, UK, 2003.
  11. Yu L, Liu HS, Xie FW, Chen L, Li XX, Polym. Eng. Sci., 48(4), 634 (2008)
  12. Tsai CC, Wu RJ, Cheng HY, Polym. Degrad. Stabil., 95, 1292 (2010)
  13. Jariyasakoolroj P, Tashiro K, Wang H, Yamamoto H, Chinsirikul W, Kerddonfag N, Chirachanchai S, Polymer, 68, 234 (2015)
  14. Arnold JC, Dves OM, Yield Fract. Polym. (1997) 298.
  15. Ou X, Cakmak M, Polymer, 49(24), 5344 (2008)
  16. Li ZQ, Zhao XW, Ye L, Coates P, Caton-Rose F, Martyn M, Chem. Eng. J., 279, 767 (2015)
  17. Li ZQ, Zhao XW, Ye L, Coates P, Caton-Rose F, Martyn M, Polymer, 56, 523 (2015)
  18. Li Z, Zhao X, Ye L, J. Biomed. Mater. Res., 5, 1082 (2016)
  19. Liu X, Dever M, Fair N, Benson RS, J. Environ. Polym. Degrad., 5, 225 (1997)
  20. Najafi N, Heuzey MC, Carreau PJ, Polym. Degrad. Stabil., 97, 554 (2012)
  21. Lehermeier HJ, Dorgan JR, Polym. Eng. Sci., 41(12), 2172 (2001)
  22. Cailloux J, Perez OOS, Urquiza EAF, eXPRESS Polym. Lett., 3, 304 (2013)
  23. Gupta RK, Polymer and Composite Rheology, CRC Press, 2000.
  24. Cogswell FN, Trans. Soc. Rheol., 16, 383 (1972)
  25. Tadmor Z, Gogos CG, Principles of Polymer Processing, John Wiley & Sons, 2013.
  26. Khodabakhshi K, Ehsani M, Development and applications of sustainable polylactic acid parts, Handbook of Sustainable Polymers: Processing and Applications, Pan Stanford Publishing Pte. Lte, Singapore, 2016, pp. 397.
  27. Liu JY, Lou LJ, Yu W, Liao RG, Li RM, Zhou CX, Polymer, 51(22), 5186 (2010)
  28. Marubayashi H, Asai S, Sumita M, Macromolecules, 45(3), 1384 (2012)
  29. Zhang CM, Zhai TL, Turng LS, Dan Y, Ind. Eng. Chem. Res., 54(38), 9505 (2015)
  30. Ertel SI, Chilkoti A, Horbetti TA, Ratner B, J. Biomater. Sci.-Polym. Ed., 2, 163 (2012)
  31. Meaurio E, de Arenaza IM, Lizundia E, Sarasua JR, Macromolecules, 42(15), 5717 (2009)
  32. Lampin M, Waropuier-Clerout LC, Degrange M, Sigot-Luizard MF, J. Biomed. Mater. Res., 36, 99 (1997)