화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.2, 185-190, April, 2018
Co/HY 제올라이트 촉매상에서 Bicyclo[2.2.1]hepta-2,5-diene 이량화를 통한 고에너지밀도 연료 제조
Synthesis of High-energy-density Fuel through Dimerization of Bicyclo[2.2.1]hepta-2,5-diene over Co/HY Catalyst
E-mail:
초록
Bicyclo[2.2.1]hepta-2,5-diene (norbornadiene)의 이량체는 고에너지밀도 연료로 사용 가능하다. 본 연구의 목적은 Co 담지가 HY 제올라이트 촉매의 산특성에 미치는 영향과 norbornadiene의 이량화 반응에 미치는 영향을 고찰하는 것이다. HY 제올라이트 촉매에 코발트를 담지하면 산점의 양은 큰 변화가 없으나 산 세기는 약해졌다. 이는 Bronsted산의 감소와 Lewis산의 증가에 기인한 것으로 볼 수 있다. HY 제올라이트와 Co/HY를 촉매로 사용하여 norbornadiene 이량화 반응을 수행한 결과, Co/HY 촉매는 HY 제올라이트 촉매보다 더 높은 norbornadiene 전환율과 norbornadiene 이량체 수율을 나타내었다. Norbornadiene 이량화 반응에서 Co/HY 촉매의 활성이 HY 촉매보다 더 높은 것은 Lewis 산점의 역할이 더 크기 때문으로 해석할 수 있다. Co/HY 촉매를 이용하여 제조한 norbornadiene 이량체의 밀도와 발열량이 문헌에 알려진 값과 잘 일치하며, 본 연구에서 제조한 norbornadiene 이량체가 고에너지밀도 연료로서 사용 가능하다는 것을 확인하였다.
The dimer of bicyclo [2.2.1] hepta-2,5-diene (norbornadiene) can be used as a high-energy-density fuel. The purpose of this study is to investigate the effect of Co loading on the acid properties of HY zeolite catalyst and the catalytic activity in norbornadiene dimerization. When the cobalt was loaded on the HY zeolite catalyst, the amount of acid sites did not change, but the acid strength weakened. This can be attributed to the decrease in Bronsted acid site and the increase in Lewis acid site. The norbornadiene conversion and yield of norbornadiene dimer over the Co/HY catalyst showed higher than those over the HY zeolite catalyst. The higher activity of the Co/HY catalyst can be ascribed to the higher amount of Lewis acid sites over the Co/HY catalyst. Density and calorific values of the norbornadiene dimer prepared by using the Co/HY catalyst agreed well with the known values in the literature. It was confirmed that the norbornadiene dimer prepared in this study can be used as a high-energy-density fuel.
  1. Zou JJ, Xu Y, Zhang X, Wang L, Appl. Catal. A: Gen., 421-422, 79 (2012)
  2. Dalk E, Dastan A, Tetrahedron, 71, 1966 (2015)
  3. Jeong BH, Han JS, J. Korean Soc. Propulsion Eng., 5, 190 (2007)
  4. Xing EH, Mi ZT, Xin CW, Wang L, Zhang XW, J. Mol. Catal. A-Chem., 231(1-2), 161 (2005)
  5. Li YH, Zou JJ, Zhang XW, Wang L, Mi ZT, Fuel, 89(9), 2522 (2010)
  6. Dao NM, MS Thesis, Kyung Hee University, Seoul, Korea (2008).
  7. Nguyen D, Nguyen LV, Lee JS, Han JS, Jeong BH, Cheong MS, Kim HS, Kang JH, Bull. Korean Chem. Soc., 29, 1364 (2008)
  8. Wu Y, Xue Y, Kim CK, J. Comput. Chem., 29, 1250 (2007)
  9. Zoche G, Dimerization Process, US Patent 3,377,398 (1966).
  10. Schneider A, Myers HK, Suld G, Dimerization of norbornadiene to a mixture of exo-endo and endo-endo hexacyclic dimers, US Patent 4,275,254 (1981).
  11. Watanabe Y, Mitsudo T, Zhang SW, US Patent 5,608,131 (1995).
  12. Nguyen MD, Nguyen LV, Jeon EH, Kim JH, Cheong M, Kim HS, Lee JS, J. Catal., 258(1), 5 (2008)
  13. Goldshleger NF, Azbel BL, Isakov YL, Shpiro ES, Minachev KM, Stud. Surf. Sci. Catal., 105, 1235 (1997)
  14. Gol’dshleger NF, Azbel BL, Isakov YL, Shpiro ES, Minachev KM, J. Mol. Catal. A-Chem., 106, 159 (1996)
  15. Chung HS, Chen CSH, Kremer RA, Boulton JR, Burdette GW, Energy Fuels, 13(3), 641 (1999)
  16. Jeong BH, Han J, Jeon JK, Park E, Jeong K
  17. Jeong K, Kim J, Han J, Jeong B, Jeon JK, Top. Catal., 60, 743 (2017)
  18. Jeong K, Kim J, Han J, Jeong B, Jeon JK, J. Nanosci. Nanotechnol., 17, 8255 (2017)
  19. Niwa M, Katada N, Chem. Rec., 13, 432 (2013)
  20. Farneth WE, Gorte RJ, Chemical Rev., 95, 615 (1995)
  21. Lee E, Yun S, Park YK, Jeong SY, Han J, Jeon JK, J. Ind. Eng. Chem., 20(3), 775 (2014)
  22. Chakraborty B, Viswanathan B, Catal. Today, 49(1-3), 253 (1999)
  23. Palomino GT, Pascual JJC, Delgado MR, Parra JB, Arean CO, Mater. Chem. Phys., 85(1), 145 (2004)
  24. Zaki MI, Hasan MA, Al-Sagheer FA, Pasupulety L, Colloids Surf. A: Physicochem. Eng. Asp., 19, 261 (2001)
  25. Kim J, Han J, Kwon TS, Park YK, Jeon JK, Catal. Today, 232, 69 (2014)
  26. Kwak KY, Kim MS, Lee DW, Cho YH, Han J, Kwon TS, Lee KY, Fuel, 137, 230 (2014)