화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.3, 330-335, June, 2018
동시-공증발 기상 중합을 이용한 전도성 PEDOT-PSMA 박막 제조
Preparation of Conductive PEDOT-PSMA Hybrid Thin Films Using Simultaneous Co-vaporized Vapor Phase Polymerization
E-mail:
초록
서로 다른 중합 메카니즘(산화 커플링 중합 및 라디칼 중합)을 가지는 둘 이상의 단량체를 동시에 공-증발 기상 중합 (SC-VPP)을 하여 유기-유기 전도성 복합 박막을 제조하는 새로운 접근법을 보고한다. 본 연구에서는 SC-VPP 공정을 통해 poly(3,4-ethylenedioxythiophene)(PEDOT)와 poly(styrene-co-maleic anhydride)(PSMA)로 구성된 PEDOT-PSMA 복합 박막을 제조하였다. 유기-유기 전도성 복합체 박막의 제조는 FT-IR 및 1H-NMR 분석을 통해 확인되었다. 전자주사 현미경을 통한 표면 형태학 분석으로 PEDOT-PSMA 박막이 PEDOT 박막보다 좀 더 거친 표면을 보였다. 이것은 소수성 특성을 가지는 PEDOT과 친수성 특성기를 가지는 PSMA와의 좋지 않은 상용성 때문이라고 생각된다. 따라서 PEDOT-PSMA는 PEDOT보다 낮은 전기 전도도를 나타내었지만 약염기인 2-ethyl-4-methyl imidazole을 첨가하면 크게 개선되었다. PEDOT-PSMA의 접촉각은 PEDOT의 경우 62°에 비해 약 50°로 친수성이 증가하였고, 이는, PSMA가 가지는 카르보닐기에 의한 것이라 판단된다. 제안된 SC-VPP 기반 유기-유기 하이브리드 박막 제조 경로를 통하여 다양한 고분자 전도성 박막의 표면 특성(친수특성, 기계적 강도, 광학특성 및 표면 거칠기) 등을 제어할 수 있다고 판단한다.
A new approach for the fabrication of organic-organic conducting composite thin films using simultaneous co-vaporization vapor phase polymerization (SC-VPP) of two or more monomers that have different polymerization mechanisms (i.e., oxidation- coupling polymerization and radical polymerization) was reported for the first time. In this study, a PEDOT-PSMA composite thin film consisting of poly(3,4-ethylenedioxythiophene)(PEDOT) and poly(styrene-co-maleic anhydride)(PSMA) was prepared by SC-VPP process. The preparation of organic-organic conductive composite thin films was confirmed through FT-IR and 1H-NMR analyses. The surface morphology analysis showed that the surface of PEDOT-PSMA thin film was rougher than that of PEDOT thin film. Therefore, PEDOT-PSMA exhibited lower electrical conductivity than that of PEDOT. But the conductivity can be improved by adding 2-ethyl-4-methyl imidazole as a weak base. The contact angle of PEDOT-PSMA was about 50°, as compared to 62° for PEDOT. The demonstrated methodology for preparing an organic-organic conductive hybrid thin film is expected to be useful for adjusting intrinsic conductive polymer (ICP)’s surface properties such as mechanical, optical, and roughness properties.
  1. Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG, Phys. Rev. Lett., 39, 1098 (1977)
  2. Irimia-Vladu M, Chem. Soc. Rev., 43, 588 (2014)
  3. Gerard M, Chaubey A, Malhotra BD, Biosens. Bioelectron., 17, 345 (2002)
  4. Guimard NK, Gomez N, Schmidt CE, Prog. Polym. Sci, 32, 876 (2007)
  5. Levermore PA, Chen LC, Wang XH, Das R, Bradley DDC, Adv. Mater., 19(17), 2379 (2007)
  6. Welsh DM, Kumar A, Meijer EW, Reynolds JR, Adv. Mater., 16, 1379 (1999)
  7. Lee KS, Yun JH, Han YH, Yim JH, Park NG, Cho KY, Park JH, J. Mater. Chem., 21, 15193 (2011)
  8. D’Arcy JM, El-Kady MF, Khine PP, Zhang L, Lee SH, Davis NR, Liu DS, Yeung MT, Kim SY, Turner CL, Lech AT, Hammond PT, Kaner RB, ACS Nano, 8, 1500 (2014)
  9. Ahn J, Yoon JS, Jung SG, Yim JH, Cho KY, J. Mater. Chem. A, 5, 21214 (2017)
  10. Nardes AM, Kemerink M, Kok MMD, Vinken E, Maturova K, Janssen RAJ, Org. Electron., 9, 727 (2008)
  11. Somboonsub B, Invernale MA, Thongyai S, Praserthdam P, Scola DA, Sotzing GA, Polymer, 51(6), 1231 (2010)
  12. Wei Y, Yeh JM, Jin D, Jia X, Wang J, Jang GW, Chen C, Gumbs RW, Chem. Mater., 7, 969 (1995)
  13. Zeng X, Zhou T, Leng C, Zang Z, Wang M, Hu W, Tang X, Lu S, Fang L, Zhou M, J. Mater. Chem. A, 5, 17499 (2017)
  14. Ko YS, Yim JH, Polymer, 93, 167 (2016)
  15. Kim JY, Kwon MH, Min YK, Kwon S, Ihm DW, Adv. Mater., 19(21), 3501 (2007)
  16. Mohammadi A, Hasan M, Liedberg B, Lundstrom I, Salaneck W, Synth. Met., 14, 189 (1986)
  17. Kim J, Kim E, Won Y, Lee H, Suh K, Synth. Met., 139, 485 (2003)
  18. Winther-Jensen B, Breiby DW, West K, Synth. Met., 152, 1 (2005)
  19. Lock JP, Im SG, Gleason KK, Macromolecules, 39(16), 5326 (2006)
  20. Fabretto M, Muller M, Hall C, Murphy P, Short RD, Griesser HJ, Polymer, 51(8), 1737 (2010)
  21. Choi JS, Cho KY, Yim JH, Eur. Polym. J., 46, 389 (2010)
  22. Han YH, Yim JH, Polymer, 34, 450 (2010)
  23. Jang J, Lim B, Angew. Chem.-Int. Edit., 115, 5758 (2003)
  24. Choi M, Lim B, Jang J, Macromol. Res., 16(3), 200 (2008)
  25. Tenhaeff WE, Gleason KK, Adv. Funct. Mater., 18(7), 979 (2008)
  26. Asatekin A, Barr MC, Baxamura SH, Lau KKS, Tenhaeff W, Xu J, Gleason KK, Mater. Today, 13, 26 (2010)
  27. Tenhaeff WE, Gleason KK, Langmuir, 23(12), 6624 (2007)
  28. Chan K, Gleason KK, Chem. Vap. Deposition, 11, 437 (2005)
  29. Lawal AT, Wallace GG, Talanta, 119, 133 (2014)
  30. Han YH, T-Sejdic J, Wright B, Yim JH, Macromol. Chem. Phys., 212, 521 (2011)
  31. Yim JH, Compos. Sci. Technol., 86, 45 (2013)
  32. Khadka R, Yim JH, Macromol. Res., 23(6), 559 (2015)
  33. Ko YS, Yim JH, Polymer, 93, 167 (2016)
  34. Kim SW, Lee SW, Kim J, Yim JH, Cho KY, Polymer, 102, 127 (2016)
  35. Choi JS, Park JS, Kim B, Lee BT, Yim JH, Polymer, 120, 95 (2017)
  36. Ahn J, Yoon S, Jung SG, Yim JH, Cho KY, J. Mater. Chem. A, 5, 21214 (2017)
  37. Jung SG, Cho KY, Yim JH, J. Ind. Eng. Chem., 63, 95 (2018)
  38. Winther-Jensen B, West K, Macromolecules, 37(12), 4538 (2004)
  39. Kim DO, Lee PC, Kang SJ, Jang K, Lee JH, Cho MH, Nam JD, Thin Solid Films, 517(14), 4156 (2009)
  40. Jang KS, Kim DO, Lee JH, Hong SC, Lee TW, Lee Y, Nam JD, Org. Electron., 11, 1668 (2010)
  41. Nair S, Hsiao E, Kim SH, Chem. Mater., 21, 115 (2009)
  42. Yan D, Xu XH, Ma GQ, Sheng J, J. Appl. Polym. Sci., 125(2), 1352 (2012)
  43. de Leeuw DM, Kraakman PA, Bongaerts PFG, Mutsaers CMJ, Klaassen DBM, Synth. Met., 66, 263 (1994)
  44. Ha YH, Nikolov N, Pollack SK, Mastrangelo J, Martin BD, Shashidhar R, Adv. Funct. Mater., 14(6), 615 (2004)