Applied Chemistry for Engineering, Vol.29, No.3, 350-355, June, 2018
굴참나무 촉매열분해에 바이오매스 반탄화가 미치는 영향
The Effect of Biomass Torrefaction on the Catalytic Pyrolysis of Korean Cork Oak
E-mail:
초록
본 연구에서는 굴참나무의 열분해 및 촉매 열분해에 바이오매스 반탄화가 미치는 영향에 대한 연구를 수행하였다. 굴참나무와 반탄화된 굴참나무의 열분해 및 촉매 열분해 거동은 열중량분석 결과와 회분식반응기를 이용한 급속열분해 반응에서 얻어진 바이오오일의 생성물분포를 비교하여 평가하였다. 굴참나무와 반탄화된 굴참나무의 열중량 곡선 및 미중열중량곡선은 굴참나무 내 헤미셀룰로오스의 제거량은 반탄화 온도 및 시간을 증가시킴에 따라 증가됨을 나타내었다. 굴참나무의 반탄화과정에서 헤미셀룰로오스의 제거로 굴참나무 내 셀룰로오스와 리그닌의 함량이 증가되기 때문에 열분해 과정에서 오일의 수율은 감소하고 고형 촤 수율은 증가하였다. 반탄화 굴참나무의 열분해 오일 중레보글루코산과 페놀류의 선택도는 굴참나무 열분해 오일에 비해 높았다. 바이오오일 중 방향족 화합물의 함량은 HZSM-5 (SiO2/Al2O3 = 30) 상에서 굴참나무 및 반탄화된 굴참나무의 촉매열분해를 적용함으로써 증가되었다. 굴참나무에 비해, 반탄화 굴참나무는 HZSM-5를 이용한 촉매 열분해를 통한 방향족화합물 형성에 더 높은 효율을 보였고 더 높은 반탄화 온도(280 ℃) 및 반응온도(600 ℃)를 적용함으로써 극대화되었다.
In this study, the effect of biomass torrefaction on the thermal and catalytic pyrolysis of cork oak was investigated. The thermal and catalytic pyrolysis behavior of cork oak (CO) and torrefied CO (TCO) were evaluated by comparing their thermogravimetric (TG) analysis results and product distributions of bio-oils obtained from the fast pyrolysis using a fixed bed reactor. TG and differential TG (DTG) curves of CO and TCO revealed that the elimination amount of hemicellulose in CO increased by applying the higher torrefaction temperature and longer torrefaction time. CO torrefaction also decreased the oil yield but increased that of solid char during the pyrolysis because the contents of cellulose and lignin in CO increased due to the elimination of hemicellulose during torrefaction. Selectivities of the levoglucosan and phenolics in TCO pyrolysis oil were higher than those in CO pyrolysis oil. The content of aromatic hydrocarbons in bio-oil increased by applying the catalytic pyrolysis of CO and TCO over HZSM-5 (SiO2/Al2O3 = 30). Compared to CO, TCO showed the higher efficiency on the formation of aromatic hydrocarbons via the catalytic pyrolysis over HZSM-5 and the efficiency was maximized by applying the higher torrefaction and catalytic pyrolysis reaction temperatures of 280 and 600 ℃, respectively.
- Cha JS, Park SH, Jung SC, Ryu C, Jeon JK, Shin MC, Park YK, J. Ind. Eng. Chem., 40, 1 (2016)
- Lee HW, Kim YM, Jae J, Jeon JK, Jung SC, Kim SC, Park YK, Energy Conv. Manag., 129, 81 (2016)
- Corton J, Donnison IS, Patel M, Buhle L, Hodgson E, Wachendorf M, Bridgwater A, Allison G, Fraser MD, Appl. Energy, 177, 852 (2016)
- Shafaghat H, Rezaei PS, Ro DH, Jae JH, Kim BS, Jung SC, Sung BH, Park YK, J. Ind. Eng. Chem., 54, 447 (2017)
- Lee H, Kim YM, Lee IG, Jeon JK, Jung SC, Chung JD, Choi WG, Park YK, Korean J. Chem. Eng., 33(12), 3299 (2016)
- Kim HN, Shafaghat H, Kim JK, Knag BS, Jeon JK, Jung SC, Lee IG, Park YK, Korean J. Chem. Eng., 35(4), 922 (2018)
- Meng JJ, Park J, Tilotta D, Park S, Bioresour. Technol., 111, 439 (2012)
- Sadaka S, Negi S, Environ. Prog. Sustain. Energy, 28, 427 (2009)
- Kim YM, Jae J, Kim BS, Hong Y, Jung SC, Park YK, Energy Conv. Manag., 149, 966 (2017)
- Neupane S, Adhikari S, Wang Z, Ragauskas AJ, Pu Y, Green Chem., 17, 2406 (2015)
- Chen DY, Li YJ, Deng MS, Wang JY, Chen M, Yan B, Yuan QQ, Bioresour. Technol., 214, 615 (2016)
- Arteaga-Perez LE, Capiro OG, Romero R, Delgado A, Olivera P, Ronsse F, Jimenez R, Energy, 128, 701 (2017)
- Srinivasan V, Adhikari S, Chattanathan SA, Tu M, Park S, BioEnergy Res., 7, 867 (2014)
- Adhikari S, Srinivasan V, Fasina O, Energy Fuels, 28(7), 4532 (2014)
- Mahadevan R, Adhikari S, Shakya R, Wang K, Dayton DC, Li M, Pu Y, Ragauskas AJ, J. Anal. Appl. Pyrolysis, 122, 95 (2016)
- Atienza-Martinez M, Rubio I, Fonts I, Ceamanos J, Gea G, Chem. Eng. J., 308, 264 (2017)
- Lee HW, Kim YM, Jae J, Sung BH, Jung SC, Kim SC, Jeon JK, Park YK, J. Anal. Appl. Pyrolysis, 122, 282 (2016)
- Kim YM, Kim BS, Chea KS, Jo TS, Kim S, Park YK, Appl. Chem. Eng., 27(4), 407 (2016)
- Barta-Rajnai E, Wang L, Sebestyen Z, Barta Z, Khalil R, Skreiberg O, Gronli M, Jakab E, Czegeny Z, Energy Procedia, 105, 551 (2017)
- Zheng AQ, Zhao ZL, Chang S, Huang Z, Wang XB, He F, Li HB, Bioresour. Technol., 128, 370 (2013)
- Zheng AQ, Zhao ZL, Huang Z, Zhao K, Wei GQ, Wang XB, He F, Li HB, Energy Fuels, 28(9), 5804 (2014)