Clean Technology, Vol.24, No.2, 99-104, June, 2018
고농도 메탄의 합성천연가스 생산을 위한 상업용 촉매의 반응특성; 운전조건에 대한 영향
Catalytic Performance for the Production of CH4-rich Synthetic Natural Gas (SNG) on the Commercial Catalyst; Influence of Operating Conditions
E-mail:
초록
본 연구에서는 합성천연가스(synthetic natural gas, SNG)를 생산하기 위한 공정 개발을 위해 RIST-IAE에서 제안한 공정의 4차 반응기에 대하여 합성가스(H2/CO2)를 이용하여 메탄화 반응을 수행하였다. 실험의 조건은 온도, 압력, 공간속도 등을 변화시켰으며, 이때 CO2 전환율, CH4 선택도, 반응 후 H2의 농도에 대해 고찰하였다. 그 결과 CO2 메탄화반응에 의한 CH4의 선택도는 공간속도가 낮을수록, 그리고 압력이 높을수록 증가하였다. 한편, 온도의 경우에는 320 ℃에서 최대 값을 보였다. 이러한 결과로부터 SNG 공정에 적합한 4차반응기의 최적 조건을 얻을 수 있었다.
In this work, we performed the methanation reaction using synthesis gas (H2/CO2) for the process to produce synthetic natural gas (SNG) for 4th methanation reactor in SNG process proposed by RIST-IAE. Experimental conditions were changed with temperature, pressure and space velocity. At this time, CO2 conversion, CH4 selectivity and H2 concentration after reaction were investigated. As a result, CH4 selectivity by the CO2 methanation increased with lower space velocity and higher pressure. On the other hand, in the case of temperature, the maximum value was shown at 320 ℃. From these results, it was found that the optimum condition of the fourth reactor suitable for the SNG process was obtained.
- Yoo YD, Kim SH, Yun Y, Jin KT, KIC News, 12, 38 (2009)
- Ding YJ, Han WJ, Chai QH, Yang SH, Shen W, Energy Policy, 55, 445 (2013)
- Nagase S, Takami S, Hirayama A, Hirai Y, Catal. Today, 45(1-4), 393 (1998)
- Kopyscinski J, Schildhauer TJ, Biollaz SMA, Fuel, 89(8), 1763 (2010)
- Kang SH, Kim JH, Kim HS, Ryu JH, Jeong KJ, Yoo YD, Kim KJ, Clean Technol., 20(1), 57 (2014)
- Haldor Topsoe, “From Coal to Substitute Natural Gas Using TREMP,” Technical Report, Haldor Topsoe, 2008.
- Kim JH, Kang SH, Ryu JH, Lee SK, Kim SH, Kim MH, Lee DY, Yoo Y, Byun C, Lim H, Korean Chem. Eng. Res., 49(4), 491 (2011)
- Kim S, Yoo Y, Kang S, Ryu J, Kim J, Kim M, Koh D, Lee H, Kim G, Kim H, Clean Technol., 19(2), 156 (2013)
- Hoehlein B, Menzer R, Range J, Appl. Catal., 1, 125 (1981)
- Vitasari CR, Jurascik M, Ptasinski KJ, Energy, 36(6), 3825 (2011)
- Kim JH, Kang SH, Young DY, Baik JH, Koh DJ, Theor. Appl. Chem. Eng., 17, 1688 (2011)
- Rabou PLM, Bos L, Appl. Catal. B: Environ., 111-112, 456 (2012)
- van der Meijden CM, Veringa HJ, Rabou LPLM, Biomass Bioenerg., 34(3), 302 (2010)
- Mangena SJ, Bunt JR, Waanders FB, Baker G, Fuel, 90(1), 167 (2011)
- Tian DY, Liu ZH, Li DD, Shi HL, Pan WX, Cheng Y, Fuel, 104, 224 (2013)
- Bassano C, Deiana P, Pacetti L, Verdone N, Fuel, 161, 355 (2015)
- Rostrup-Nielsen JR, Pedersen K, Sehested J, Appl. Catal. A: Gen., 330, 134 (2007)
- Jang SY, Yoon KB, J. Energy Eng., 18(1), 49 (2009)
- Kim HS, Hong SM, Hwang TY, KIGAS, 13(3), 28 (2009)
- Kim WS, Jang JI, KIGAS, 15(3), 67 (2011)
- Baik JH, Yoo YD, Kang SH, Koh DJ, Kim JH, Kim SH, Ryu JH, “Apparatus and Method for Producing Synthetic Natural Gas Using Synthesis Gas of Low H2/CO Ratio,” KR. Patent No. 1020120153905 (2012).