화학공학소재연구정보센터
Clean Technology, Vol.24, No.2, 99-104, June, 2018
고농도 메탄의 합성천연가스 생산을 위한 상업용 촉매의 반응특성; 운전조건에 대한 영향
Catalytic Performance for the Production of CH4-rich Synthetic Natural Gas (SNG) on the Commercial Catalyst; Influence of Operating Conditions
E-mail:
초록
본 연구에서는 합성천연가스(synthetic natural gas, SNG)를 생산하기 위한 공정 개발을 위해 RIST-IAE에서 제안한 공정의 4차 반응기에 대하여 합성가스(H2/CO2)를 이용하여 메탄화 반응을 수행하였다. 실험의 조건은 온도, 압력, 공간속도 등을 변화시켰으며, 이때 CO2 전환율, CH4 선택도, 반응 후 H2의 농도에 대해 고찰하였다. 그 결과 CO2 메탄화반응에 의한 CH4의 선택도는 공간속도가 낮을수록, 그리고 압력이 높을수록 증가하였다. 한편, 온도의 경우에는 320 ℃에서 최대 값을 보였다. 이러한 결과로부터 SNG 공정에 적합한 4차반응기의 최적 조건을 얻을 수 있었다.
In this work, we performed the methanation reaction using synthesis gas (H2/CO2) for the process to produce synthetic natural gas (SNG) for 4th methanation reactor in SNG process proposed by RIST-IAE. Experimental conditions were changed with temperature, pressure and space velocity. At this time, CO2 conversion, CH4 selectivity and H2 concentration after reaction were investigated. As a result, CH4 selectivity by the CO2 methanation increased with lower space velocity and higher pressure. On the other hand, in the case of temperature, the maximum value was shown at 320 ℃. From these results, it was found that the optimum condition of the fourth reactor suitable for the SNG process was obtained.
  1. Yoo YD, Kim SH, Yun Y, Jin KT, KIC News, 12, 38 (2009)
  2. Ding YJ, Han WJ, Chai QH, Yang SH, Shen W, Energy Policy, 55, 445 (2013)
  3. Nagase S, Takami S, Hirayama A, Hirai Y, Catal. Today, 45(1-4), 393 (1998)
  4. Kopyscinski J, Schildhauer TJ, Biollaz SMA, Fuel, 89(8), 1763 (2010)
  5. Kang SH, Kim JH, Kim HS, Ryu JH, Jeong KJ, Yoo YD, Kim KJ, Clean Technol., 20(1), 57 (2014)
  6. Haldor Topsoe, “From Coal to Substitute Natural Gas Using TREMP,” Technical Report, Haldor Topsoe, 2008.
  7. Kim JH, Kang SH, Ryu JH, Lee SK, Kim SH, Kim MH, Lee DY, Yoo Y, Byun C, Lim H, Korean Chem. Eng. Res., 49(4), 491 (2011)
  8. Kim S, Yoo Y, Kang S, Ryu J, Kim J, Kim M, Koh D, Lee H, Kim G, Kim H, Clean Technol., 19(2), 156 (2013)
  9. Hoehlein B, Menzer R, Range J, Appl. Catal., 1, 125 (1981)
  10. Vitasari CR, Jurascik M, Ptasinski KJ, Energy, 36(6), 3825 (2011)
  11. Kim JH, Kang SH, Young DY, Baik JH, Koh DJ, Theor. Appl. Chem. Eng., 17, 1688 (2011)
  12. Rabou PLM, Bos L, Appl. Catal. B: Environ., 111-112, 456 (2012)
  13. van der Meijden CM, Veringa HJ, Rabou LPLM, Biomass Bioenerg., 34(3), 302 (2010)
  14. Mangena SJ, Bunt JR, Waanders FB, Baker G, Fuel, 90(1), 167 (2011)
  15. Tian DY, Liu ZH, Li DD, Shi HL, Pan WX, Cheng Y, Fuel, 104, 224 (2013)
  16. Bassano C, Deiana P, Pacetti L, Verdone N, Fuel, 161, 355 (2015)
  17. Rostrup-Nielsen JR, Pedersen K, Sehested J, Appl. Catal. A: Gen., 330, 134 (2007)
  18. Jang SY, Yoon KB, J. Energy Eng., 18(1), 49 (2009)
  19. Kim HS, Hong SM, Hwang TY, KIGAS, 13(3), 28 (2009)
  20. Kim WS, Jang JI, KIGAS, 15(3), 67 (2011)
  21. Baik JH, Yoo YD, Kang SH, Koh DJ, Kim JH, Kim SH, Ryu JH, “Apparatus and Method for Producing Synthetic Natural Gas Using Synthesis Gas of Low H2/CO Ratio,” KR. Patent No. 1020120153905 (2012).