화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.4, 468-473, August, 2018
접촉식 가수열분해 반응에 의한 감압잔사유의 점도 강하에 대한 연구
Viscosity Reduction by Catalytic Aquathermolysis Reaction of Vacuum Residues
E-mail:
초록
본 연구에서는 접촉식 가수열분해 반응을 이용하여 원유를 감압증류한 후 생산되는 고점도의 감압잔사유(VR)의 개질반응을 실시하였다. 감압잔사유는 30 bar, 300 ℃ 이상에서 24 h 동안 수증기(steam)와 반응하면, 구성성분 중에서 레진류와 아스팔텐류가 감소하고, 포화탄화수소류(saturates)나 방향족탄화수소류(aromatics)가 증가하는 경향을 보였다. 이때 스팀 양이 적은 경우에는 가수열분해 반응 후 아스팔텐 함량이 증가되는 역반응 효과도 관측되었다. 수소공여제인데칼린을 사용하며 메탈옥사이드-제올라이트계 촉매를 사용하는 접촉식 가수열분해 반응 결과 레진과 아스팔텐류가 10% 정도 줄고 방향족 탄화수소류가 10% 증가하면서 점도 감소효과도 70% 정도로 우수하였다. GC-Mass spectroscopy를 이용하여 촉매 사용 시 가수열분해 반응 결과 분자량이 적은 물질로의 분해효과가 우수함을 확인할 수 있었다.
In this study, the reforming reaction of vacuum residues (VR), high viscosity oil residues produced from vacuum distillation process of petroleum oil, was carried out using catalytic aquathermolysis reaction. VR showed a prone to decrease the amount of resins and asphaltenes in the constituents, and to increase saturates and aromatics when reacting with steam at 30 bar and above 300 ℃ for 24 h. When the amount of steam is not enough at this reaction, the asphaltene content in the products was rather increased after the reaction. As a result of the catalytic aquathermolysis using the metal oxide-zeolite catalyst with the decaline as a hydrogen donor, a 10% decrease in resin and asphaltene as well as a 10% increase in the aromatic hydrocarbon were observed. Consequently, the viscosity of VR decreased by 70% after the reaction. GC-Mass spectroscopy showed that the aquathermolysis of VR resulted in the decomposition of the resins and asphaltens into a low molecular weight material.
  1. Meyer RF, Attanasi ED, Freeman PA, Heavy Oil and Natural Bitumen Resources in Geological Basins of the World, U.S. Department of Interior & U.S. Geological Survey Open File-Report 2007-1084 (2007).
  2. Lee HC, Park SK, Appl. Chem. Eng., 27, 344 (2016)
  3. Ko JY, Park DH, Park SK, Appl. Chem. Eng., 28(4), 467 (2017)
  4. Muraza O, J. Anal. Appl. Pyrolysis, 114, 1 (2015)
  5. Ali MF, Abbas S, Fuel Process. Technol., 87(7), 573 (2006)
  6. Kim HC, Jeong WJ, Lee WC, Park SK, Asian J. Chem., 27, 4288 (2015)
  7. Kapadia PR, Kallos MS, Gates ID, Fuel Process. Technol., 131, 270 (2015)
  8. Muraza O, Galadima A, Fuel, 157, 219 (2015)
  9. Hyne JB, “The Future of Heavy Crude and Tar Sands.” February 7-17, Caracas, Venezuela (1982): p. 404-411, McGraw Hill, NY, USA (1984).
  10. Bera A, Babadagli T, Appl. Energy, 151, 206 (2015)
  11. Ahmadun FR, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ, J. Hazard. Mater., 170(2-3), 530 (2009)
  12. Wu C, Lei GL, Yao CJ, Sun KJ, Gai PY, Cao YB, J. Fuel Chem. Technol., 38, 684 (2010)
  13. Zhao F, Wang X, Wang Y, Shi Y, J. Chem. Pharm. Res., 6(5), 2037 (2014)
  14. Maity SK, Ancheyta J, Marroquin G, Energy Fuels, 24, 2809 (2010)
  15. Shokrlu YH, Babadagli T, J. Pet. Sci. Eng., 119, 210 (2014)
  16. Wen SB, Liu YJ, Song YW, J. Daqing Pet. Inst., 28, 25 (2004)
  17. Wang J, Yuan YZ, Zhang L, Wang R, J. Pet. Sci. Eng., 66, 69 (2009)
  18. Merissa S, Fitriani P, Iskandar F, Abdullah M, AIP Conf. Proc., 1554, 131 (2013)
  19. Ovalles C, Rengel-Unda P, Bruzual J, Salazar A, Fuel Chem, 48, 59 (2003)
  20. Ovalles C, Vallejos C, Vasquez T, Rojas I, Ehrman U, Benitez JL, Martinez R, Pet. Sci. Technol., 21, 255 (2003)
  21. Liu YJ, Fan HF, Energy Fuels, 16(4), 842 (2002)
  22. Ovalles C, Unda PR, Bruzual J, Salazar A, ACS Fuel Chem. Div. Reprints, 48, 59 (2003)
  23. Jing P, Li Q, Han M, Sun D, Jia L, Fang W, Shiyou Huagong, 36, 237 (2007)
  24. Zhong L, Liu Y, Fan H, Jiang S, Proceeding of SPE International Improved Oil Recovery Conference in Asia Pacific, October 20-21, Kuala Lumpur, Malaysia (2003): SPE-84863 (2003).