Applied Chemistry for Engineering, Vol.29, No.4, 468-473, August, 2018
접촉식 가수열분해 반응에 의한 감압잔사유의 점도 강하에 대한 연구
Viscosity Reduction by Catalytic Aquathermolysis Reaction of Vacuum Residues
E-mail:
초록
본 연구에서는 접촉식 가수열분해 반응을 이용하여 원유를 감압증류한 후 생산되는 고점도의 감압잔사유(VR)의 개질반응을 실시하였다. 감압잔사유는 30 bar, 300 ℃ 이상에서 24 h 동안 수증기(steam)와 반응하면, 구성성분 중에서 레진류와 아스팔텐류가 감소하고, 포화탄화수소류(saturates)나 방향족탄화수소류(aromatics)가 증가하는 경향을 보였다. 이때 스팀 양이 적은 경우에는 가수열분해 반응 후 아스팔텐 함량이 증가되는 역반응 효과도 관측되었다. 수소공여제인데칼린을 사용하며 메탈옥사이드-제올라이트계 촉매를 사용하는 접촉식 가수열분해 반응 결과 레진과 아스팔텐류가 10% 정도 줄고 방향족 탄화수소류가 10% 증가하면서 점도 감소효과도 70% 정도로 우수하였다. GC-Mass spectroscopy를 이용하여 촉매 사용 시 가수열분해 반응 결과 분자량이 적은 물질로의 분해효과가 우수함을 확인할 수 있었다.
In this study, the reforming reaction of vacuum residues (VR), high viscosity oil residues produced from vacuum distillation process of petroleum oil, was carried out using catalytic aquathermolysis reaction. VR showed a prone to decrease the amount of resins and asphaltenes in the constituents, and to increase saturates and aromatics when reacting with steam at 30 bar and above 300 ℃ for 24 h. When the amount of steam is not enough at this reaction, the asphaltene content in the products was rather increased after the reaction. As a result of the catalytic aquathermolysis using the metal oxide-zeolite catalyst with the decaline as a hydrogen donor, a 10% decrease in resin and asphaltene as well as a 10% increase in the aromatic hydrocarbon were observed. Consequently, the viscosity of VR decreased by 70% after the reaction. GC-Mass spectroscopy showed that the aquathermolysis of VR resulted in the decomposition of the resins and asphaltens into a low molecular weight material.
- Meyer RF, Attanasi ED, Freeman PA, Heavy Oil and Natural Bitumen Resources in Geological Basins of the World, U.S. Department of Interior & U.S. Geological Survey Open File-Report 2007-1084 (2007).
- Lee HC, Park SK, Appl. Chem. Eng., 27, 344 (2016)
- Ko JY, Park DH, Park SK, Appl. Chem. Eng., 28(4), 467 (2017)
- Muraza O, J. Anal. Appl. Pyrolysis, 114, 1 (2015)
- Ali MF, Abbas S, Fuel Process. Technol., 87(7), 573 (2006)
- Kim HC, Jeong WJ, Lee WC, Park SK, Asian J. Chem., 27, 4288 (2015)
- Kapadia PR, Kallos MS, Gates ID, Fuel Process. Technol., 131, 270 (2015)
- Muraza O, Galadima A, Fuel, 157, 219 (2015)
- Hyne JB, “The Future of Heavy Crude and Tar Sands.” February 7-17, Caracas, Venezuela (1982): p. 404-411, McGraw Hill, NY, USA (1984).
- Bera A, Babadagli T, Appl. Energy, 151, 206 (2015)
- Ahmadun FR, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ, J. Hazard. Mater., 170(2-3), 530 (2009)
- Wu C, Lei GL, Yao CJ, Sun KJ, Gai PY, Cao YB, J. Fuel Chem. Technol., 38, 684 (2010)
- Zhao F, Wang X, Wang Y, Shi Y, J. Chem. Pharm. Res., 6(5), 2037 (2014)
- Maity SK, Ancheyta J, Marroquin G, Energy Fuels, 24, 2809 (2010)
- Shokrlu YH, Babadagli T, J. Pet. Sci. Eng., 119, 210 (2014)
- Wen SB, Liu YJ, Song YW, J. Daqing Pet. Inst., 28, 25 (2004)
- Wang J, Yuan YZ, Zhang L, Wang R, J. Pet. Sci. Eng., 66, 69 (2009)
- Merissa S, Fitriani P, Iskandar F, Abdullah M, AIP Conf. Proc., 1554, 131 (2013)
- Ovalles C, Rengel-Unda P, Bruzual J, Salazar A, Fuel Chem, 48, 59 (2003)
- Ovalles C, Vallejos C, Vasquez T, Rojas I, Ehrman U, Benitez JL, Martinez R, Pet. Sci. Technol., 21, 255 (2003)
- Liu YJ, Fan HF, Energy Fuels, 16(4), 842 (2002)
- Ovalles C, Unda PR, Bruzual J, Salazar A, ACS Fuel Chem. Div. Reprints, 48, 59 (2003)
- Jing P, Li Q, Han M, Sun D, Jia L, Fang W, Shiyou Huagong, 36, 237 (2007)
- Zhong L, Liu Y, Fan H, Jiang S, Proceeding of SPE International Improved Oil Recovery Conference in Asia Pacific, October 20-21, Kuala Lumpur, Malaysia (2003): SPE-84863 (2003).