화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.66, 72-77, October, 2018
Suppressed char agglomeration by rotary kiln reactor with alumina ball during the pyrolysis of Kraft lignin
E-mail:
In this study, the pyrolysis of Kraft lignin was conducted in a rotary kiln reactor using rotating alumina balls as a filler to achieve a continuous pyrolysis process by the suppression of char agglomeration. Temperature variation experiments showed that the gas yield increased and the char yield decreased with an increase in the pyrolysis temperature from 550 °C to 650 °C. The maximum oil yield was obtained at a reaction temperature of 600 °C. Compared to a fixed bed reactor, a rotary kiln reactor using alumina balls produced the higher quality oil containing larger amount of organic phase oil and higher selectivity to aromatic hydrocarbons. At all temperatures, no lignin char agglomeration occurred inside the reactor due to the effective collision of lignin char intermediates and alumina balls, allowing a continuous pyrolysis process without reactor plugging.
  1. Kanaujia PK, Sharma YK, Garg MO, Tripathi D, Singh R, J. Anal. Appl. Pyrolysis, 105, 55 (2014)
  2. Gallezot P, Chem. Soc. Rev., 41, 1538 (2012)
  3. Lee EH, Park RS, Kim H, Park SH, Jung SC, Jeon JK, Kim SC, Park YK, J. Ind. Eng. Chem., 37, 18 (2016)
  4. Cha JS, Park SH, Jung SC, Ryu C, Jeon JK, Shin MC, Park YK, J. Ind. Eng. Chem., 40, 1 (2016)
  5. Lee YJ, Shafaghat H, Kim JK, Jeon JK, Jung SC, Lee IG, Park YK, Korean J. Chem. Eng., 34(8), 2180 (2017)
  6. Lee H, Kim YM, Lee IG, Jeon JK, Jung SC, Chung JD, Choi WG, Park YK, Korean J. Chem. Eng., 33(12), 3299 (2016)
  7. Lee H, Park RS, Lee HW, Hong Y, Lee Y, Park SH, Jung SC, Yoo KS, Jeon JK, Park YK, Carbon Lett., 19, 79 (2016)
  8. Lee HW, Park RS, Park SH, Jung SC, Jeon JK, Kim SC, Chung JD, Choi WG, Park YK, Carbon Lett., 18, 49 (2016)
  9. Dai LL, Fan LL, Liu YH, Ruan RG, Wang YP, Zhou Y, Zhao YF, Yu ZT, Bioresour. Technol., 225, 1 (2017)
  10. Zhang M, Resende FLP, Moutsoglou A, Fuel, 116, 358 (2014)
  11. Fan LL, Chen P, Zhang YN, Liu SY, Liu YH, Wang YP, Dai LL, Ruan R, Bioresour. Technol., 225, 199 (2017)
  12. Huber GW, Iborra S, Corma A, Chem. Rev., 106(9), 4044 (2006)
  13. Pandey MP, Kim CS, Chem. Eng. Technol., 34(1), 29 (2011)
  14. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, et al., Science, 344, 124684 (2014)
  15. Nowakowski DJ, Bridgwater AV, Elliott DC, Meier D, de Wild P, J. Anal. Appl. Pyrolysis, 88, 53 (2010)
  16. Li D, Briens C, Berruti F, Biomass Bioenergy, 76, 96 (2015)
  17. Trinh TN, Jensen PA, Sarossy Z, Dam-Johansen K, Knudsen NO, Sorensen HR, Egsgaard H, Energy Fuels, 27(7), 3802 (2013)
  18. Gooty AT, Li D, Berruti F, Briens C, J. Anal. Appl. Pyrolysis, 106, 33 (2014)
  19. Zhou S, Brown RC, Bai X, Green Chem., 17, 4748 (2015)
  20. Zhou G, Jensen PA, Le DM, Knudsen NO, Jensen AD, Green Chem., 18, 1965 (2016)
  21. Shafaghat H, Rezaei PS, Ro DH, Jae JH, Kim BS, Jung SC, Sung BH, Park YK, J. Ind. Eng. Chem., 54, 447 (2017)
  22. Ghetti P, Ricca L, Angelini L, Fuels, 75, 565 (1996)
  23. Varhegyi G, Antal M, Jakab E, Szabo E, J. Anal. Appl. Pyrolysis, 42, 73 (1997)
  24. Kim YM, Jae J, Myung S, Sung BH, Dong JI, Park YK, Bioresour. Technol., 209, 371 (2016)
  25. Chauruka SR, Hassanpour A, Brydson R, Roberts KJ, Ghadiri M, Stitt H, Chem. Eng. Sci., 134, 774 (2015)