- Previous Article
- Next Article
- Table of Contents
Applied Chemistry for Engineering, Vol.29, No.5, 489-496, October, 2018
음이온교환막연료전지용 음이온교환막의 문제점과 해결방안
Problems and Solutions of Anion Exchange Membranes for Anion Exchange Membrane Fuel Cell (AEMFC)
E-mail:
초록
화학에너지를 전기에너지로 전환하는 친환경 에너지 자원으로 각광받는 연료전지에서 고분자 전해질 연료전지(proton exchange membrane fuel cell, PEMFC)의 비싼 백금촉매 사용, 고온가습조건에서의 전도도 감소 등의 문제로 음이온교 환연료전지(anion exchange membrane fuel cell, AEMFC)가 주목을 받고 있다. 음이온교환연료전지는 비백금계 촉매를 사용하고 산소환원반응의 활성화 에너지가 낮아 효율이 더 우수한 장점이 있다. 하지만, 이산화탄소에 노출되어 전극 손상, 이온전도도 감소 등의 문제점을 포함하여 여러 가지 해결해야 할 문제점이 있다. 따라서, 본 미니총설은 음이온 교환연료전지의 다양한 문제점을 여러 연구논문을 통해서 해결방안을 제시하고자 한다.
Fuel cells are seen as eco-friendly energy resources that convert chemical energy into electrical energy. However, proton exchange membrane fuel cells (PEMFCs) have problems such as the use of expensive platinum catalysts for the reduction of conductivity under high temperature humidification conditions. Thus, an anion exchange membrane fuel cell (AEMFC) is attracting a great attention. Anion exchange fuel cells use non - Pt catalysts and have the advantage of better efficiency because of the lower activation energy of the oxygen reduction reaction. However, there are various problems to be solved including problems such as the electrode damage and reduction of ion conductivity by being exposed to the carbon dioxide. Therefore, this mini review proposes various solutions for different problems of anion exchange fuel cells through a wide range of research papers.
- Scribd. Inc., http://pt.scribd.com/doc/3323459/Effect-of-Climate-changein-agriculture-and-livestock-production, July 11 (2018).
- Eastern Research Group, Inc., https://www.erg.com/project/digitaltransformation-epas-greenhouse-gas-emissions-report, July 11 (2018).
- Korea Energy Agency, 2017 Vehicle Fuel Economy and CO2 Emissions: Data and Analyses, pp. 53-58, Korea (2017).
- Toyota Motor Sales, U.S.A. Inc., https://ssl.toyota.com/mirai/fcv.html, July 11 (2018).
- Hydrogen Cars Now, http://www.hydrogencarsnow.com/index.php/kenworth-t680-fuel-cell-heavy-truck/, July 11 (2018).
- Money Today, http://news.mt.co.kr/mtview.php?no=2017091216144652060, September 12 (2017).
- Park CH, Nam SY, Hong YT, Membr. J., 26, 329 (2016)
- Kim DJ, Nam SY, Membr. J., 22, 155 (2012)
- Zhang T, Wang PQ, Chen HC, Pei PC, Appl. Energy, 223, 249 (2018)
- Majlan EH, Rohendi D, Daud WRW, Husaini T, Haque MA, Renew. Sust. Energ. Rev., 89, 117 (2018)
- Woo CH, Membr. J., 26, 407 (2016)
- Jang WG, Ye SH, Kang SK, Kim JT, Byun HS, Membr. J., 21, 270 (2011)
- Lee DH, Kim SJ, Nam SY, Kim HJ, Membr. J., 20, 217 (2010)
- Gottesfeld S, Dekel DR, Page M, Bae CS, Yan Y, Zelenay P, Kim YS, J. Power Sources, 375, 1701 (2018)
- Pan ZF, An L, Zhao TS, Tang ZK, Prog. Energy Combust. Sci., 66, 141 (2018)
- Gupta G, Scott K, Mamlouk M, Fuel Cells, 2, 137 (2018)
- Sun Z, Lin B, Yan F, ChemSusChem, 11, 58 (2018)
- He QG, Cairns EJ, J. Electrochem. Soc., 162(14), F1504 (2015)
- Wojnarowska Z, Paluch M, J. Phys. Condens. Matter, 27, 073202 (2015)
- Atkins P, Paula JD, Keeler J, Atkins’ Physical Chemistry, 702, Oxford University Press, Oxford, UK (2006).
- Chen J, Li C, Wang J, Li L, Wei Z, J. Mater. Chem. A, 5, 6318 (2017)
- Suzuki S, Muroyama H, Matsui T, Eguchi K, Electrochim. Acta, 88, 552 (2013)
- Ziv N, Mustain WE, Dekel DR, ChemSusChem, 11, 1136 (2018)
- Agel E, Bouet J, Fauvarque JF, J. Power Sources, 101(2), 267 (2001)
- Varcoe JR, Slade RCT, AAPG Bull., 5, 187 (2005)
- Bae BC, Kim EY, Lee SJ, Lee HJ, New Renew. Energy, 11, 52 (2015)
- Lee HH, KOSEN Expert Review, 1, 1 (2012)
- Lee HJ, Choi J, Chang BJ, Kim JH, Korean Ind. Chem. News, 14(6), 21 (2011)
- Poynton SD, Varcoe JR, Solid State Ion., 277, 38 (2015)
- Lee WH, Park EJ, Han JY, Shin DW, Kim YS, Bae CS, ACS Macro Lett., 6, 566 (2017)
- Yanagi H, Fukuta K, ECS Trans., 16, 257 (2008)
- Bauer B, Strathmann H, Effenberger F, Desalination, 79, 125 (1990)
- Yan Y, Xu B, Wang J, Zhao Y, Poly(aryl piperidinium) polymers for use as hydroxide exchange membranes and ionomers, WO2017172824A1, March 28 (2016).
- Pandey TP, Sarode HN, Yang Y, Yang Y, Vezzu K, Noto VD, Seifert S, Knauss DM, Liberatore MW, Herring AM, J. Electrochem. Soc., 165, H513 (2016)
- Kwon S, Rao AHN, Kim TH, J. Power Sources, 375, 421 (2018)
- Kim DJ, Lee BN, Nam SY, Int. J. Hydrog. Energy, 42(37), 23759 (2017)
- Dekel DR, J. Power Sources, 375, 158 (2018)
- Yun S, Ma X, Liu H, Hao J, Polym. Bull., 75, 5163 (2018)
- Ko BS, Sohn JY, Nho YC, Shin JH, J. Radiat. Ind., 5, 179 (2011)
- Shin JH, Sohn JY, Nho YC, Kang TJ, Kim DS, Im DS, Lee BH, Kim JH, J. Radiat. Ind., 6, 289 (2012)
- Lee BS, Jung SK, Rhim JW, Polymer, 35, 296 (2011)
- Zhang H, Shi B, Ding R, Chen H, Wang J, Liu J, Int. Eng. Chem. Res., 55, 9064 (2016)
- Watanabe M, Satoh Y, Shimura C, J. Electrochem. Soc., 140, 3190 (1993)
- Choi KH, Park DJ, Rho YW, Kho YT, Lee TH, Proc. 16th KSIEC Meeting, October 24-25, Daejeon, Korea (1997).
- Yadav R, Fedkiw PS, J. Electrochem. Soc., 159(3), B340 (2012)
- Kim Y, Ketpang K, Jaritphun S, Park JS, Shanmugam S, J. Mater. Chem. A, 3, 8148 (2015)
- Shin MS, Kim DH, Kang MS, Park JS, J. Korean Electrochem. Soc., 19, 107 (2016)
- Wang L, Magliocca E, Cunningham EL, Mustain WE, et al., Green Chem., 19, 831 (2017)
- Gao X, Yu H, Jia J, Hao J, Xie F, Chi J, Qin B, Fu L, Song W, Shao Z, RSC Adv., 7, 19153 (2017)
- Liu XD, Gao HR, Chen XH, Hu Y, Pei SP, Li H, Zhang YM, J. Membr. Sci., 515, 268 (2016)
- Shin MS, Byun YJ, Choi YW, Kang MS, Park JS, Int. J. Hydrog. Energy, 39(29), 16556 (2014)
- Zhao Y, Yu HM, Yang DL, Li J, Shao ZG, Yi BL, J. Power Sources, 221, 247 (2013)
- Luo Y, Guo J, Wang C, Chu D, Electrochem. Commun., 16, 65 (2012)
- Pan J, Lu SF, Li Y, Huang AB, Zhuang L, Lu JT, Adv. Funct. Mater., 20(2), 312 (2010)
- Gu S, Cai R, Luo T, Chen Z, Sun M, Liu Y, He G, Yan Y, Angew. Chem.-Int. Edit., 121, 6621 (2009)