화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.5, 541-548, October, 2018
Rh/CeO2 촉매의 N2O 분해반응 특성 및 효율증진 연구
N2O Decomposition Characteristics and Efficiency Enhancement of Rh/CeO2 Catalyst
E-mail:
초록
본 연구에서는 N2O를 제거하기 위한 N2O 분해 촉매와 반응특성에 대한 연구를 수행하고자 한다. 다양한 지지체에 Rh를 활성금속으로 촉매를 제조하여 실험을 수행하였으며, CeO2를 지지체로 하는 Rh/CeO2 촉매에서 가장 우수한 N2O 분해활성을 나타내었다. 특히 일정한 소성조건(500 ℃-4 hr)에서 Rh/CeO2 촉매를 제조하였을 때 가장 우수한 활성을 나타내었다. 또한 촉매의 특성이 N2O 분해 반응에 미치는 영향을 확인하고자 H2-TPR 및 XPS 분석을 수행하였다. 실험결과, 촉매의 redox 특성증진과 Ce3+의 비율이 증가함에 따른 촉매의 산소전달능력의 증진이 N2O 분해반응에 영향을 주는 것으로 확인되었다. 또한, N2O와 NO가 동시에 발생하는 조건에서 N2O 분해 반응특성과, N2O와 NO를 동시에 처리 가능한 공정에 대하여 연구하고자 한다.
In this work, the N2O decomposition catalyst and reaction characteristics to control the N2O removal were described. Experiments were carried out by using Rh as an active metal catalyst on various supports and the Rh/CeO2 catalyst with CeO2 support showed the best activity for the N2O decomposition when it was prepared under the constant heat treatment condition (500 ℃-4 hr). H2-TPR and XPS analyzes were performed to confirm the effect of the physical and chemical properties of the catalyst on N2O decomposition. As a result, it was found that the increase of the oxygen transfer capacity of the catalyst due to the increase of both the redox property and Ce3+ amount affected the decomposition reaction of N2O. In addition, the future work will include a treatment process capable of decomposition N2O and NO under the condition that N2O and NO are simultaneously generated and its characteristics of N2O decomposition reaction.
  1. Yang WH, Kim MH, Korean J. Chem. Eng., 23(6), 908 (2006)
  2. Perez-Ramirez J, Kapteijn F, Schoffel K, Moulijn JA, Appl. Catal. B: Environ., 44, 11 (2003)
  3. Greenhouse Gas Inventory & Research Center of Korea, Nantional Greenhouse Gas Inventory Report of Korea, Ministry of Environment, Korea (2016).
  4. Moon HK, Korean Chem. Eng. Res., 51, 163 (2013)
  5. Christoforou SC, Efthimiadis EA, Vasalos IA, Catal. Lett., 79(1-4), 137 (2002)
  6. Pinna F, Scarpa M, Strukul G, Guglielminotti E, Boccuzzi F, Manzoli M, J. Catal., 192(1), 158 (2000)
  7. Zhang X, Shen Q, He C, Ma C, Cheng J, Liu Z, Hao Z, Catal. Sci. Technol., 2, 1249 (2012)
  8. Hussain M, Fino D, Russo N, J. Hazard. Mater., 211-212, 255 (2012)
  9. Doi K, Wu YY, Takeda R, Matsunami A, Arai N, Tagawa T, Goto S, Appl. Catal. B: Environ., 35(1), 43 (2001)
  10. Song H, Synthesis and Reaction Characteristics of N2O Decomposition Catalysts Derived from Hydrotalcite-type Precursors, MS. Thesis, Sangmyung Univ., Korea (2004).
  11. Kim SS, Lee SJ, Hong SC, Chem. Eng. J., 169(1-3), 173 (2011)
  12. Chen L, Chen HY, Lin J, Tan KL, Surf. Interface Anal., 28, 115 (1999)
  13. Xue L, Zhang CB, He H, Teraoka Y, Appl. Catal. B: Environ., 75(3-4), 167 (2007)
  14. Parres-Esclapez S, Illan-Gomez MJ, de Lecea CSM, Bueno-Lopez A, Int. J. Greenhouse Gas Control, 11, 251 (2012)
  15. Trovarelli A, Catalysis by Ceria and Related Materials, Imperial College Press, UK (2001).
  16. Burroughs P, Hamnett A, Orchard AF, Thornton G, J. Chem. Soc.-Dalton Trans., 1686 (1976)
  17. Nelson AE, Schulz KH, Appl. Surf. Sci., 210(3-4), 206 (2003)
  18. Chen LA, Li JH, Ge MF, Zhu RH, Catal. Today, 153(3-4), 77 (2010)
  19. Kondarides DI, Verykios XE, J. Catal., 174(1), 52 (1998)