화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.5, 556-564, October, 2018
PEO/EVA/MWCNT 복합막을 통한 기체투과 성질
Gas Permeation Properties of PEO/EVA/MWCNT Composite Membranes
E-mail:
초록
본 연구에서는 PEO [poly(ethylene oxide)]/EVA [poly(ethylene-co-vinyl acetate)]에 MWCNT (multi-walled carbon nanotube)-COOH 1, 2, 3, 5 wt% 첨가하여 PEO/EVA/MWCNT-COOH 복합막을 제조하였다. 그리고 복합막에 대해 30 ℃, 4~8 bar의 압력에서 N2, O2, CO2의 기체투과 성질을 조사하였다. 각 PEO/EVA/MWCNT-COOH 복합막들에서 CO2의 투과도는 압력 증가에 따라 증가하였고, N2와 O2는 압력에 거의 변화를 받지 않았다. 그리고 MWCNT-COOH 함량이 증가하면서 CO2 투과도가 증가하다가 2 wt% MWCNT-COOH 함량이상에서 감소하였는데 2 wt% MWCNT-COOH 복합막은 8 bar에서 CO2/N2 선택도 77.8과 CO2 투과도 84 barrer를 나타내었다. 높은 CO2/N2 선택도와 CO2 투과도는 사극자 CO2와 PEO 내의 극성 에테르기, EVA의 극성 에스터기와 함께 MWCNT 표면의 -COOH기 간의 높은 친화력 때문이다.
In this study, polyethylene oxide (PEO)/polyethylene-co-vinyl acetate (EVA)/multi-walled carbon nanotube (MWCNT)-COOH composite membranes were prepared by adding 1, 2, 3, and 5 wt% of MWCNT-COOH to PEO/EVA respectively. The gas permeation properties of N2, O2 and CO2 at 30 ℃ and 4~8 bar pressure were investigated. In each PEO/EVA/ MWCNT-COOH composite membranes, the permeability of CO2 increased with increasing the pressure, but the permeability of N2 and O2 were independent of the feeding pressure. As the MWCNT-COOH content increased, the CO2 permeability increased and then decreased above 2 wt% MWCNT-COOH content. The 2 wt% MWCNT-COOH composite membrane exhibited a CO2/N2 selectivity of 77.8 and a CO2 permeability of 84 barrer at 8 bar. The high CO2/N2 selectivity and CO2 permeability were due to the high affinity between the quadrupolar CO2, polar ether groups of PEO, and the polar ester groups of EVA. Additionally, the strong affinity between CO2 and the -COOH groups on the MWCNT surface contributed to the high permeability of CO2.
  1. Scholes CA, Smith KH, Kentish SE, Stevens GW, Int. J. Greenhouse Gas Control, 4, 739 (2010)
  2. Bernardo P, Drioli E, Golemme G, Ind. Eng. Chem. Res., 48(10), 4638 (2009)
  3. Wolinska-Grabczyk A, Kubica P, Jankowski A, J. Membr. Sci., 443, 227 (2013)
  4. Baker RW, Ind. Eng. Chem. Res., 41(6), 1393 (2002)
  5. Freeman BD, Macromolecules, 32(2), 375 (1999)
  6. Shen Y, Lua AC, Chem. Eng. J., 192, 201 (2012)
  7. Murali RS, Ismail AF, Rahman MA, Sridhar S, Sep. Purif. Technol., 129, 1 (2014)
  8. Ismail AF, Rahim NH, Mustafa A, Matsuura T, Ng BC, Abdullah S, Hashemifard SA, Sep. Purif. Technol., 80(1), 20 (2011)
  9. Nour M, Berean K, Balendhran S, Ou JZ, Du Plessis J, McSweeney C, Bhaskaran M, Sriram S, Kalantar-zadeh K, Int. J. Hydrog. Energy, 38(25), 10494 (2013)
  10. Park KW, Kim GH, J. Appl. Polym. Sci., 112(3), 1845 (2009)
  11. Cong HL, Zhang JM, Radosz M, Shen YQ, J. Membr. Sci., 294(1-2), 178 (2007)
  12. Aroon MA, Ismail AF, Montazer-Rahmati MM, Matsuura T, J. Membr. Sci., 364(1-2), 309 (2010)
  13. Ismail AF, Rahim NH, Mustafa A, Matsuura T, Ng BC, Abdullah S, Hashemifard SA, Sep. Purif. Technol., 80(1), 20 (2011)
  14. Murali RS, Sridhar S, Sankarshana T, Ravikumar YVL, Ind. Eng. Chem. Res., 49(14), 6530 (2010)
  15. Wang SF, Liu Y, Huang SX, Wu H, Li YF, Tian ZZ, Jiang ZY, J. Membr. Sci., 460, 62 (2014)
  16. Hong CH, Han DS, Nam BU, Polymer, 34, 198 (2010)
  17. Ge L, Zhu ZH, Rudolph V, Sep. Purif. Technol., 78(1), 76 (2011)
  18. Yoon HW, Lee HD, Park HB, Membr. J., 23(5), 375 (2013)
  19. Aviles F, Rodriguez JVC, Tah LM, Pat AM, Coronado RV, Carbon, 47, 2970 (2009)
  20. Mousavi SA, Sadeghi M, Motamed-Hashemi MMY, Chenar MP, Roosta-Azad R, Sadeghi M, Sep. Purif. Technol., 62(3), 642 (2008)
  21. Lin H, Freeman BD, J. Membr. Sci., 239(1), 105 (2004)
  22. Seo BK, Kim JH, Ahn HS, Chang BJ, Lee KH, Korea Ind. Chem. (KIC) News, 14, 1 (2011)
  23. Lin H, Freeman BD, J. Mol. Struct., 739, 57 (2005)
  24. Okamoto K, Umeo N, Okamyo S, Tanaka K, Kita H, Chem. Lett., 22, 225 (1993)
  25. Okamoto K, Fujii M, Okamyo S, Suzuki H, Tanaka K, Kita H, Macromolecules, 28(20), 6950 (1995)
  26. Shur YJ, Ranby B, J. Appl. Polym. Sci., 19, 1337 (1975)
  27. Lee HK, Kang MJ, Membr. J., 27(2), 147 (2017)
  28. Cimmino S, Martuscelli E, Saviano M, Silvestre C, Polymer, 32, 1461 (1991)
  29. Simon FT, Rutherford JM, J. Appl. Phys., 35, 82 (1964)
  30. Yeom CK, Lee JM, Hong YT, Choi KY, Kim SC, J. Membr. Sci., 166(1), 71 (2000)
  31. Jin J, Song M, Pan F, Thermochim. Acta, 456(1), 25 (2007)
  32. Tehrani MS, Azar PA, Namin PE, Dehaghi SM, J. Environ. Prot., 4, 529 (2013)
  33. Maxwel Cl, Treatise on Electricity and Magnetism, Oxford University Press, London, UK (1873).
  34. Barrer RM, Barrie JA, Rogers MG, J. Polym. Sci. A: Polym. Chem., 1, 2565 (1963)
  35. Chung TS, Jiang LY, Li Y, Kulprathipanja S, Prog. Polym. Sci, 32, 483 (2007)
  36. Merkel TC, He ZJ, Pinnau I, Freeman BD, Meakin P, Hill AJ, Macromolecules, 36(18), 6844 (2003)
  37. Hashemifard SA, Ismail AF, Matsuura T, J. Colloid Interface Sci., 359(2), 359 (2011)
  38. Robeson LM, J. Membr. Sci., 320(1-2), 390 (2008)