Journal of Industrial and Engineering Chemistry, Vol.68, 274-281, December, 2018
Characterization of flow properties of pharmaceutical pellets in draft tube conical spout-fluid beds
E-mail:
Experimental studies of the hydrodynamic performance of the draft tube conical spout-fluid bed (DCSF) were conducted using pharmaceutical pellets. The experiments were carried out in a DCSF consisted of two sections: (a) a conical section with the cross section of 120 mm × 250 mm and the height of 270 mm, (b) a cylindrical section with the diameter of 250 mm and the height of 600 mm. The flow characteristics of solids were investigated with a high speed camera and a pezoresistive absolute pressure transducer simultaneously. These characteristics revealed different flow regimes in the DCSF: packed bed at low gas velocities, fluidized bed in draft tube at higher gas velocities until minimum spouting, and spouted bed. The stable spouting was identified by the presence of two dominant frequencies of the power spectrum density of pressure fluctuation signature: (i) the frequency band 6?9 Hz and (ii) the frequency band 12?15 Hz. The pressure drops across the draft tube as well as the annulus measured in order to better recognize the flow structure in the DCSF. It was observed that the pressure drop across the draft tube, the pressure drop across the annulus, and the minimum spouting velocity increase with the increase in the height of draft tube and distance of the entrainment zone, but with the decrease in the distributor hole pitch. Finally, this study provided novel insight into the hydrodynamic of DCSF, particularly minimum spouting and stable spouting in the DCSF which contains valuable information for process design and scale-up of spouted bed equipment.
Keywords:Conical spout-fluid bed;Pharmaceutical pellets;Particle coating;Pressure drop;Minimum spouting
- Mathur KB, Gishler P, AIChE J., 1, 157 (1955)
- Tzika M, Alexandridou S, Kiparissides C, Powder Technol., 132(1), 16 (2003)
- Fernandez-Akarregi AR, Makibar J, Lopez G, Amutio M, Olazar M, Fuel Process. Technol., 112, 48 (2013)
- Lopez G, Olazar M, Aguado R, Bilbao J, Fuel, 89(8), 1946 (2010)
- Adegoroye A, Paterson N, Li X, Morgan T, Herod AA, Dugwell DR, Kandiyoti R, Fuel, 83(14-15), 1949 (2004)
- Vuthaluru HB, Zhang DK, Fuel Process. Technol., 70(1), 41 (2001)
- Ma XX, Kaneko T, Tashimo T, Yoshida T, Kato K, Chem. Eng. Sci., 55(20), 4643 (2000)
- Kechagiopoulos PN, Voutetakis SS, Lemonidou AA, Vasalos IA, Catal. Today, 127(1-4), 246 (2007)
- Zewail TM, Yousef NS, Alexandria Eng. J., 54, 83 (2015)
- Mathur KB, Epstein N, Adv. Chem. Eng., 9, 111 (1974)
- Epstein N, Grace JR, Spouting of Particulate Solids, Springer, p.532 1997.
- Mathur K, Spouted Beds, Academic Press, New York, NY, 1974.
- Epstein N, Grace JR, Spouted and Spout-fluid Beds: Fundamentals and Applications, Cambridge University Press, 2010.
- Wang X, Si H, Cheng Q, Kong J, Zhao D, J. Ind. Eng. Chem., 25, 258 (2015)
- Zhao J, Lim CJ, Grace JR, Chem. Eng. Sci., 42, 2865 (1987)
- Li R, Zhong ZP, Jin BS, Jiang XX, Wang CH, Zheng AJ, Can. J. Chem. Eng., 90(5), 1202 (2012)
- Plawsky JL, Littman H, Paccione JD, Powder Technol., 199(2), 131 (2010)
- Zhong WQ, Zhang MY, Powder Technol., 159(3), 121 (2005)
- Littman H, Vukovic D, Zdanski FK, Grbavcic Z, Can. J. Chem. Eng., 52, 174 (1974)
- Heil C, Tels M, Can. J. Chem. Eng., 61, 331 (1983)
- Vukovic D, Hadzismajlovic DE, Grbavcic ZB, Garic R, Littman H, Can. J. Chem. Eng., 62, 825 (1984)
- Zhong WQ, Chen XP, Zhang MY, Chem. Eng. J., 118(1-2), 37 (2006)
- Nagashima H, Ishikura T, Ide M, Can. J. Chem. Eng., 89(2), 264 (2011)
- Zhong WQ, Zhang MY, Powder Technol., 152(1-3), 52 (2005)
- Su GL, Huang GQ, Li M, Liu CJ, Chem. Eng. J., 237, 277 (2014)
- Zhang YM, Huang GQ, Su GL, Chem. Eng. J., 328, 645 (2017)
- Wu M, Guo QJ, Liu LY, Ind. Eng. Chem. Res., 53(5), 1999 (2014)
- Sutkar VS, van Hunsel TJK, Deen NG, Salikov V, Antonyuk S, Heinrich S, Kuipers JAM, Chem. Eng. Sci., 102, 524 (2013)
- Link KC, Schlunder EU, Chem. Eng. Process., 36(6), 443 (1997)
- Che HQ, Wu M, Ye JM, Yang WQ, Wang HG, Flow Meas. Instrum. (2017). in press https://www.sciencedirect.com/science/article/pii/S0955598617300870.
- Shelukar S, Ho J, Zega J, Roland E, Yeh N, Quiram D, Nole A, Katdare A, Reynolds S, Powder Technol., 110(1-2), 29 (2000)
- Marmo L, J. Food Eng., 79(4), 1179 (2007)
- Sari S, Kulah G, Koksal M, Exp. Therm. Fluid Sci., 40, 132 (2012)
- Bose S, Bogner RH, Pharm. Dev. Technol., 12, 115 (2007)
- Foroughi-Dahr M, Mostoufi N, Sotudeh-Gharebagh R, Chaouki J, Particle Coating in Fluidized Beds, Elsevier, 2017.
- Lustrik M, Int. J. Pharm., 533, 377 (2017)
- Hampel N, Buck A, Peglow M, Tsotsas E, Chem. Eng. Sci., 86, 87 (2013)
- Priese F, Wolf B, Powder Technol., 241, 149 (2013)
- Heng PWS, Chan LW, Tang ESK, Int. J. Pharm., 327, 26 (2006)
- Oppenheim AV, Willsky AS, Nawab S, Signals and Systems, 2nd ed., Prentice Hall, New Jersey, 1997.
- Christensen FN, Bertelsen P, Drug Dev. Ind. Pharm., 23, 451 (1997)
- Werner SRL, Jones JR, Paterson AHJ, Archer RH, Pearce DL, Powder Technol., 171(1), 34 (2007)
- Bendat JS, Piersol AG, Engineering Applications of Correlation and Spectral Analysis, Wiley-Interscience, New York, 1980.
- Freitas LAP, Dogan OM, Lim CJ, Grace JR, Bai DR, Can. J. Chem. Eng., 82(1), 60 (2004)
- Xu J, Tang JL, Wei WS, Bao XJ, Can. J. Chem. Eng., 87(2), 274 (2009)
- El Mafadi S, Hayert M, Poncelet D, Hem. Ind., 57, 641 (2003)
- Nagashima H, Suzukawa K, Ishikura T, Particuology, 11, 475 (2013)
- Nagashima H, Ishikura T, Ide M, Korean J. Chem. Eng., 16(5), 688 (1999)
- Christensen FN, Bertelsen P, Drug Dev. Ind. Pharm., 23, 451 (1997)