화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.1, 85-91, January, 2019
황 이중라디칼이 Polycarbonate, Poly(styrene-co-acrylonitrile), Polystyrene의 유변물성에 미치는 영향
Effect of Sulfur Diradicals on the Rheological Properties of Polycarbonate, Poly(styrene-co-acrylonitrile) and Polystyrene
E-mail:
초록
Polycarbonate(PC), poly(styrene-co-acrylonitrile)(SAN), 그리고 polystyrene(PS) 용액을 고강도 초음파로 가진 하는 과정에 황을 도입하여 각 고분자의 유변 물성 변화를 조사하였다. 고리구조를 가지는 황 분자들은 초음파의 동공현상으로 인하여 고리가 열려 이중 라디칼로 변환되었고, 고분자 라디칼들과의 결합 반응을 통하여 고분자의 유변물성을 변화시켰다. 가진 시간에 따른 PC, SAN, PS의 용융 점도는 순수한 상태에 비하여 증가되거나 감소되는 특징을 나타내었으나, 각 수지의 전단 담화 경향이 증가되었고 Cole-Cole plot에서는 순수한 고분자의 동일한 점성 대비 높은 탄성을 나타내었다. 응력 완화의 거동에서도 개질된 고분자 완화 시간이 증가된 것으로 확인되었다. 황과 초음파에 의하여 나타난 유변 물성의 변화를 고분자의 사슬 구조 변환과 연관지어 해석하였고, FTIR 분석과 함께 달성 가능한 가지구조의 메커니즘을 제시하였다.
The rheological properties of polycarbonate (PC), poly(styrene-co-acrylonitrile) (SAN), and polystyrene (PS) were investigated by introducing sulfur during the sonication of polymer solutions. It was found that the ring of sulfur was opened by the cavitation of ultrasound, producing the sulfur diradicals. These radicals were coupled with the macroradicals, which led to the remarkable changes in the rheological properties of the polymer. Although the melt viscosities of each polymer were increased or decreased depending on the sonication times, the shear sensitivities of PC, SAN, and PS were consistently increased and the Cole-Cole plot of the modified polymer showed higher elastic moduli at the same loss moduli of the pure resin. In the stress relaxation behavior, the relaxation time of each polymer was increased after the modification. The observed rheological properties were explained in relation to the structural variation of polymer chain and a plausible mechanism for the branched structure was proposed along with the FTIR analysis.
  1. Kutney G, Sulfur: History, Technology, Applications and Industry, ChemTec Publishing, Toronto, 2007.
  2. Chung WJ, Griebel JJ, Kim ET, Yoon H, Simmonds AG, et al., Nat. Chem., 5, 518 (2013)
  3. Lim J, Pyun J, Char K, Angew. Chem.-Int. Edit., 54, 3249 (2015)
  4. Griebel JJ, Glass RS, Char K, Pyun J, Prog. Polym. Sci, 58, 90 (2016)
  5. Carotenuto G, Romeo V, Nicola SD, Nicolais L, Nanoscale Res. Lett., 8, 94 (2013)
  6. Mason TJ, Lorimer JP, Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing, Wiley-VCH, Weinheim, 2002.
  7. Gogate PR, Prajapat AL, Ultrason. Sonochem., 27, 480 (2015)
  8. Fujiwara H, Goto K, Polym. Bull., 23, 27 (1990)
  9. Price GJ, West PJ, Polymer, 37(17), 3975 (1996)
  10. Choi M, Lee K, Lee J, Kim H, Macromol. Symp., 249, 350 (2007)
  11. Kim JH, Kim YB, Kim HS, J. Korean Ind. Eng. Chem., 20(3), 322 (2009)
  12. Sharma OP, Bhat TK, Food Chem., 113, 1202 (2009)
  13. Cole KS, Cole RH, J. Chem. Phys., 9, 341 (1941)
  14. Dealy JM, Larson RG, Structure and Rheology of Molten Polymers, Hanser Publishers, Cincinnati, 2006.
  15. Han CD, Lem KW, Polym. Eng. Rev., 2, 135 (1983)
  16. Chuang HK, Han CD, J. Appl. Polym. Sci., 29, 2205 (1984)
  17. Han CD, Kim J, Kim JK, Macromolecules, 22, 383 (1989)
  18. Harrell ER, Nakayama N, J. Appl. Polym. Sci., 29, 995 (1984)
  19. Nakayama N, Harrell ER, Current Topics in Polymer Science, Vol 2, p149 (1987).
  20. Choi SJ, Yoon KH, Kim HS, Yoo SY, Kim YC, Polym. Korea, 35(4), 356 (2011)
  21. Socrates G, Infrared Characteristic Group Frequencies: Tables and Charts, 2nd Ed., John Wiley & Sons, New York, 1994.
  22. Shao L, Ji Z, Ma J, Xue C, Ma Z, Zhang J, Sci. Rep., 6, 36931 (2016)
  23. Ahmed A, Blanchard LP, J. Appl. Polym. Sci., 29, 1225 (1984)
  24. Cheng H, Wang S, J. Mater. Chem. A, 2, 13783 (2014)