Clean Technology, Vol.25, No.1, 81-90, March, 2019
충전층 플라즈마 반응기에서 Ni-CeO2 / γ-Al2O3 촉매를 이용한 프로페인-합성 가스 건식 개질
Dry reforming of Propane to Syngas over Ni-CeO2 / γ-Al2O3 Catalysts in a Packed-bed Plasma Reactor
E-mail:
초록
프로페인(C3H8)의 건식 개질(CO2 개질)을 통한 합성 가스(H2와 CO 혼합물) 제조를 위해 Ni-CeO2/γ-Al2O3 촉매가 충진된 유전체 장벽 방전 플라즈마 반응기를 사용하였다. 열 또는 플라즈마에 의해 환원된 Ni-CeO2/γ-Al2O3 촉매를 사용하여 C3H8/CO2 비율 1/3, 총 유량 300 mL min-1에서 플라즈마-촉매 건식 개질을 수행하였다. 건식 개질에 대한 촉매 활성은 온도범위 500 ~ 600 ℃에서 평가되었다. Ni-CeO2/γ-Al2O3 촉매 제조를 위해 전구물질 수용액(질산니켈, 질산세륨)으로 함침된 γ-Al2O3를 공기 분위기에서 소성시킨 후, H2/Ar 분위기에서 환원시켰다. 촉매 특성 조사에는 X-선 회절분석기(XRD), 투과전자현미경(TEM), 전계 방출 주사전자현미경(FE-SEM), 승온 탈착(H2-TPD, CO2-TPD) 및 라만 분광기가 이용되었다. 열로환원된 촉매와 비교하면 플라즈마 방전하에서 환원된 Ni-CeO2/γ-Al2O3 촉매가 개질 반응을 통한 합성 가스 생산에서 보다우수한 촉매 활성을 나타내었다. 또한, 플라즈마로 환원된 Ni-CeO2/γ-Al2O3가 개질 반응의 문제점인 탄소퇴적 관점에서 장기 촉매 안정성을 보여주었다.
A dielectric barrier discharge (DBD) plasma reactor packed with Ni-CeO2/γ-Al2O3 catalyst was used for the dry (CO2) reforming of propane (DRP) to improve the production of syngas (a mixture of H2 and CO) and the catalyst stability. The plasma-catalytic DRP was carried out with either thermally or plasma-reduced Ni-CeO2/γ-Al2O3 catalyst at a C3H8/CO2 ratio of 1/3 and a total feed gas flow rate of 300 mL min-1. The catalytic activities associated with the DRP were evaluated in the range of 500 ~ 600 ℃. Following the calcination in ambient air, the γ-Al2O3 impregnated with the precursor solution (Ni(NO3)2 and Ce(NO3)2) was subjected to reduction in an H2/Ar atmosphere to prepare Ni-CeO2/γ-Al2O3 catalyst. The characteristics of the catalysts were examined using X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrometry (EDS), temperature programmed reduction (H2-TPR), temperature programmed desorption (H2-TPD, CO2-TPD), temperature programmed oxidation (TPO), and Raman spectroscopy. The investigation revealed that the plasma-reduced Ni-CeO2/γ-Al2O3 catalyst exhibited superior catalytic activity for the production of syngas, compared to the thermally reduced catalyst. Besides, the plasma-reduced Ni-CeO2/γ-Al2O3 catalyst was found to show long-term catalytic stability with respect to coke resistance that is main concern regarding the DRP process.
- Veerasubramani GK, Sudhakaran MSP, Alluri NR, Krishnamoorthy K, Mok YS, Kim SJ, J. Mater. Chem. A, 4, 12571 (2016)
- Luk HT, Mondelli C, Ferre DC, Stewart JA, Perez-Ramirez J, Chem. Soc. Rev., 46, 1358 (2017)
- Cheng K, Gu B, Liu X, Kang J, Zhang Q, Wang Y, Angew. Chem.-Int. Edit., 55, 4725 (2016)
- Sudhakaran MSP, Sultana L, Hossain MM, Pawlat J, Diatczyk J, Bruser V, Reuter S, Mok YS, J. Ind. Eng. Chem., 61, 142 (2018)
- Shiyi C, Economic Res. J., 4, 41 (2009)
- Siahvashi A, Adesina AA, Catal. Today, 214, 30 (2013)
- Althenayan FM, Foo SY, Kennedy EM, Dlugogorski BZ, Adesina AA, Chem. Eng. Sci., 65(1), 66 (2010)
- Pornmai K, Jindanin A, Sekiguchi H, Chavadej S, Plasma Chem. Plasma Process., 32(4), 723 (2012)
- Raberg LB, Jensen MB, Olsbye U, Daniel C, Haag S, Mirodatos C, Sjastad AO, J. Catal., 249(2), 250 (2007)
- Ghorbani A, Jafari M, Rahimpour MR, J. Natural Gas Sci. Eng., 11, 23 (2013)
- Karuppiah J, Mok YS, Int. J. Hydrog. Energy, 39(29), 16329 (2014)
- Kim KM, Kwak BS, Park NK, Lee TJ, Lee ST, Kang M, J. Ind. Eng. Chem., 46, 324 (2017)
- Natesakhawat S, Oktar M, Ozkan US, J. Mol. Catal. A-Chem., 241(1-2), 133 (2005)
- Tu X, Gallon HJ, Twigg MV, Gorry PA, Whitehead JC, J. Phys. D-Appl. Phys., 44, 274007 (2011)
- Ray D, Reddy PMK, Subrahmanyam C, Catal. Today, 309, 212 (2018)
- Gallon HJ, PhD Dissertation, The University of Manchester, Manchester, UK (2010).
- Mahammadunnisa S, Reddy PMK, Ramaraju B, Subrahmanyam C, Energy Fuels, 27(8), 4441 (2013)
- Karuppiah J, Reddy LE, Sudhakaran MSP, Lee SB, Renewable Ener. Power Qual. J., 1, 742 (2016)
- Shah YT, Gardner TH, Catal. Rev.-Sci. Eng., 56(4), 476 (2014)
- Chueh WC, Shao Z, Haile SM, Topics Catal., 46, 402 (2007)
- Luisetto I, Tuti S, Di Bartolomeo E, Int. J. Hydrog. Energy, 37(21), 15992 (2012)
- Li GH, Hu LJ, Hill JM, Appl. Catal. A: Gen., 301(1), 16 (2006)
- Sutthiumporn K, Kawi S, Int. J. Hydrog. Energy, 36(22), 14435 (2011)
- Dharanipragada NVRA, Meledina M, Galvita VV, Poelman H, Turner S, Van Tendeloo G, Detavernier C, Marin GB, Ind. Eng. Chem. Res., 55(20), 5911 (2016)
- Liu CJ, Zou J, Yu K, Cheng D, Han Y, Zhan J, Pure Appl. Chem., 78, 1227 (2006)
- Shang SY, Liu GH, Chai XY, Tao XM, Li X, Bai MG, Chu W, Dai XY, Zhao YX, Yin YX, Catal. Today, 148(3-4), 268 (2009)
- Li CL, Fu YL, Bian GZ, Acta Physico-Chimica Sinca, 19, 902 (2003)
- Rahemi N, Haghighi M, Babaluo AA, Jafari MF, Int. J. Energy Res., 38(6), 765 (2014)