화학공학소재연구정보센터
Clean Technology, Vol.25, No.1, 81-90, March, 2019
충전층 플라즈마 반응기에서 Ni-CeO2 / γ-Al2O3 촉매를 이용한 프로페인-합성 가스 건식 개질
Dry reforming of Propane to Syngas over Ni-CeO2 / γ-Al2O3 Catalysts in a Packed-bed Plasma Reactor
E-mail:
초록
프로페인(C3H8)의 건식 개질(CO2 개질)을 통한 합성 가스(H2와 CO 혼합물) 제조를 위해 Ni-CeO2/γ-Al2O3 촉매가 충진된 유전체 장벽 방전 플라즈마 반응기를 사용하였다. 열 또는 플라즈마에 의해 환원된 Ni-CeO2/γ-Al2O3 촉매를 사용하여 C3H8/CO2 비율 1/3, 총 유량 300 mL min-1에서 플라즈마-촉매 건식 개질을 수행하였다. 건식 개질에 대한 촉매 활성은 온도범위 500 ~ 600 ℃에서 평가되었다. Ni-CeO2/γ-Al2O3 촉매 제조를 위해 전구물질 수용액(질산니켈, 질산세륨)으로 함침된 γ-Al2O3를 공기 분위기에서 소성시킨 후, H2/Ar 분위기에서 환원시켰다. 촉매 특성 조사에는 X-선 회절분석기(XRD), 투과전자현미경(TEM), 전계 방출 주사전자현미경(FE-SEM), 승온 탈착(H2-TPD, CO2-TPD) 및 라만 분광기가 이용되었다. 열로환원된 촉매와 비교하면 플라즈마 방전하에서 환원된 Ni-CeO2/γ-Al2O3 촉매가 개질 반응을 통한 합성 가스 생산에서 보다우수한 촉매 활성을 나타내었다. 또한, 플라즈마로 환원된 Ni-CeO2/γ-Al2O3가 개질 반응의 문제점인 탄소퇴적 관점에서 장기 촉매 안정성을 보여주었다.
A dielectric barrier discharge (DBD) plasma reactor packed with Ni-CeO2/γ-Al2O3 catalyst was used for the dry (CO2) reforming of propane (DRP) to improve the production of syngas (a mixture of H2 and CO) and the catalyst stability. The plasma-catalytic DRP was carried out with either thermally or plasma-reduced Ni-CeO2/γ-Al2O3 catalyst at a C3H8/CO2 ratio of 1/3 and a total feed gas flow rate of 300 mL min-1. The catalytic activities associated with the DRP were evaluated in the range of 500 ~ 600 ℃. Following the calcination in ambient air, the γ-Al2O3 impregnated with the precursor solution (Ni(NO3)2 and Ce(NO3)2) was subjected to reduction in an H2/Ar atmosphere to prepare Ni-CeO2/γ-Al2O3 catalyst. The characteristics of the catalysts were examined using X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrometry (EDS), temperature programmed reduction (H2-TPR), temperature programmed desorption (H2-TPD, CO2-TPD), temperature programmed oxidation (TPO), and Raman spectroscopy. The investigation revealed that the plasma-reduced Ni-CeO2/γ-Al2O3 catalyst exhibited superior catalytic activity for the production of syngas, compared to the thermally reduced catalyst. Besides, the plasma-reduced Ni-CeO2/γ-Al2O3 catalyst was found to show long-term catalytic stability with respect to coke resistance that is main concern regarding the DRP process.
  1. Veerasubramani GK, Sudhakaran MSP, Alluri NR, Krishnamoorthy K, Mok YS, Kim SJ, J. Mater. Chem. A, 4, 12571 (2016)
  2. Luk HT, Mondelli C, Ferre DC, Stewart JA, Perez-Ramirez J, Chem. Soc. Rev., 46, 1358 (2017)
  3. Cheng K, Gu B, Liu X, Kang J, Zhang Q, Wang Y, Angew. Chem.-Int. Edit., 55, 4725 (2016)
  4. Sudhakaran MSP, Sultana L, Hossain MM, Pawlat J, Diatczyk J, Bruser V, Reuter S, Mok YS, J. Ind. Eng. Chem., 61, 142 (2018)
  5. Shiyi C, Economic Res. J., 4, 41 (2009)
  6. Siahvashi A, Adesina AA, Catal. Today, 214, 30 (2013)
  7. Althenayan FM, Foo SY, Kennedy EM, Dlugogorski BZ, Adesina AA, Chem. Eng. Sci., 65(1), 66 (2010)
  8. Pornmai K, Jindanin A, Sekiguchi H, Chavadej S, Plasma Chem. Plasma Process., 32(4), 723 (2012)
  9. Raberg LB, Jensen MB, Olsbye U, Daniel C, Haag S, Mirodatos C, Sjastad AO, J. Catal., 249(2), 250 (2007)
  10. Ghorbani A, Jafari M, Rahimpour MR, J. Natural Gas Sci. Eng., 11, 23 (2013)
  11. Karuppiah J, Mok YS, Int. J. Hydrog. Energy, 39(29), 16329 (2014)
  12. Kim KM, Kwak BS, Park NK, Lee TJ, Lee ST, Kang M, J. Ind. Eng. Chem., 46, 324 (2017)
  13. Natesakhawat S, Oktar M, Ozkan US, J. Mol. Catal. A-Chem., 241(1-2), 133 (2005)
  14. Tu X, Gallon HJ, Twigg MV, Gorry PA, Whitehead JC, J. Phys. D-Appl. Phys., 44, 274007 (2011)
  15. Ray D, Reddy PMK, Subrahmanyam C, Catal. Today, 309, 212 (2018)
  16. Gallon HJ, PhD Dissertation, The University of Manchester, Manchester, UK (2010).
  17. Mahammadunnisa S, Reddy PMK, Ramaraju B, Subrahmanyam C, Energy Fuels, 27(8), 4441 (2013)
  18. Karuppiah J, Reddy LE, Sudhakaran MSP, Lee SB, Renewable Ener. Power Qual. J., 1, 742 (2016)
  19. Shah YT, Gardner TH, Catal. Rev.-Sci. Eng., 56(4), 476 (2014)
  20. Chueh WC, Shao Z, Haile SM, Topics Catal., 46, 402 (2007)
  21. Luisetto I, Tuti S, Di Bartolomeo E, Int. J. Hydrog. Energy, 37(21), 15992 (2012)
  22. Li GH, Hu LJ, Hill JM, Appl. Catal. A: Gen., 301(1), 16 (2006)
  23. Sutthiumporn K, Kawi S, Int. J. Hydrog. Energy, 36(22), 14435 (2011)
  24. Dharanipragada NVRA, Meledina M, Galvita VV, Poelman H, Turner S, Van Tendeloo G, Detavernier C, Marin GB, Ind. Eng. Chem. Res., 55(20), 5911 (2016)
  25. Liu CJ, Zou J, Yu K, Cheng D, Han Y, Zhan J, Pure Appl. Chem., 78, 1227 (2006)
  26. Shang SY, Liu GH, Chai XY, Tao XM, Li X, Bai MG, Chu W, Dai XY, Zhao YX, Yin YX, Catal. Today, 148(3-4), 268 (2009)
  27. Li CL, Fu YL, Bian GZ, Acta Physico-Chimica Sinca, 19, 902 (2003)
  28. Rahemi N, Haghighi M, Babaluo AA, Jafari MF, Int. J. Energy Res., 38(6), 765 (2014)