화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.2, 160-166, April, 2019
활성탄소섬유에 도입된 산소작용기와 초산 분자와의 상호작용에 따른 가스 흡착 특성
Gas Adsorption Characteristics of by Interaction between Oxygen Functional Groups Introduced on Activated Carbon Fibers and Acetic Acid Molecules
E-mail:
초록
본 연구에서는 새집증후군 유발 가스인 초산 가스에 대한 활성탄소섬유의 흡착 성능을 향상시키기 위하여, 산소플라즈마 처리를 통해 활성탄소섬유에 산소작용기를 도입하였다. 산소플라즈마 처리 시 주입되는 산소 가스의 유량이 증가할수록 산소플라즈마 활성종이 더 많이 생성되었다. 이로 인해 물리적 및 화학적인 식각이 더 많이 발생하여 활성탄소섬유의 비표면적이 감소하였다. 특히, 60 sccm의 산소 가스 유량이 주입된 시료(A-O60)의 비표면적의 경우 미처리 시료와 비교하여 약 6.95% 감소된 1,198 m2/g까지 감소하였다. 반면, 산소플라즈마 처리 시 주입되는 산소 가스의 유량이 증가할수록 활성탄소섬유 표면에 도입되는 산소 함량이 증가하였으며, 최대 35.87%까지 도입되었음을 확인하였다. 또한, 산소플라즈마 처리된 활성탄소섬유의 초산 가스 흡착 성능은 미처리 활성탄소섬유 대비 최대 43% 향상되었다. 이것은 산소플라즈마 처리에 의해 도입되는 O=C-O와 같은 산소작용기와 초산 분자 사이의 쌍극자 모멘트에 의한 수소결합 형성에 기인한다.
In this study, oxygen functional groups were introduced on activated carbon fibers (ACFs) by oxygen plasma treatment to improve the adsorption performance on an acetic acid which is a sick house syndrome induced gas. The active species was generated more as the flow rate of the oxygen gas increased during the plasma treatment. For this reason, the specific surface area (SSA) of the ACFs decreased with much more physical and chemical etching. In particular, the SSA of the sample (A-O60) injected with an oxygen gas flow rate of 60 sccm was reduced to about 1.198 m2/g, which was about 6.95% lower than that of the untreated samples. On the other hand, the oxygen content introduced into the surface of ACFs increased up to 35.87%. Also, the adsorption performance on the acetic acid gas of the oxygen plasma-treated ACFs was improved by up to 43% compared to that of using the untreated ACFs. It is attributed to the formation of the hydrogen bonding due to the dipole moments between acetic acid molecules and oxygen functional groups such as O=C-O introduced by the oxygen plasma treatment.
  1. Yoon JH, Lee HJ, Kim JS, Korean J. Met. Mater., 48, 169 (2010)
  2. Shin SK, Kang JH, Song JH, J. Korean Soc. Environ. Eng., 32, 936 (2010)
  3. Kim SS, Kang DH, Choi DH, Yeo MS, Kim KW, Build. Environ., 43, 320 (2008)
  4. Koike Y, Mitarai Y, Trans. Sci. Technol., 2, 50 (2015)
  5. Zhang XY, Gao B, Creamer AE, Cao CC, Li YC, J. Hazard. Mater., 338, 102 (2017)
  6. Kamal MS, Razzak SA, Hossain MM, Atmos. Environ., 140, 117 (2016)
  7. Nam SW, Moon DS, Lee DS, Kim JH, Park IS, Yoon HJ, Sin DH, Park SS, Lee JH, Tuberc. Respir. Dis., 41, 424 (1994)
  8. McLoud TC, Radiol. Clin. North Am., 29, 931 (1991)
  9. Kim MJ, Jung MJ, Kim MI, Choi SS, Lee YS, Appl. Chem. Eng., 26(5), 587 (2015)
  10. Tang S, Lu N, Wang JK, Ryu SK, Choi HS, J. Phys. Chem. C, 111, 1820 (2007)
  11. Zhang J, Duan YF, Zhou Q, Zhu C, She M, Ding WK, Chem. Eng. J., 294, 281 (2016)
  12. Lim HS, Kim MJ, Kong EY, Jeong JD, Lee YS, Appl. Chem. Eng., 29(3), 312 (2018)
  13. Kim MJ, Jung MJ, Choi SS, Lee YS, Appl. Chem. Eng., 26(4), 432 (2015)
  14. Fayaz M, Shariaty P, Atkinson JD, Hashisho Z, Phillips JH, Anderson JE, Nichols M, Environ. Sci. Technol., 49, 4536 (2015)
  15. Jung MJ, Park MS, Lee S, Lee YS, Appl. Chem. Eng., 27(3), 319 (2016)
  16. Bai BC, Kim EA, Lee CW, Lee YS, Im JS, Appl. Surf. Sci., 353, 158 (2015)
  17. Park MS, Lee S, Jung MJ, Kim HG, Lee YS, Carbon Lett., 20, 19 (2016)
  18. Lee S, Park MS, Jung MJ, Lee YS, Trans. Korean Hydrogen New Energy Soc., 27, 298 (2016)
  19. Bai BC, Lee HU, Lee CW, Lee YS, Im JS, Chem. Eng. J., 306, 260 (2016)
  20. Okajima K, Ohta K, Sudoh M, Electrochim. Acta, 50(11), 2227 (2005)
  21. Chiang H, Huang CP, Chiang PC, You JH, Carbon, 37, 1919 (1999)
  22. Lee CY, Chung JS, Shin EW, Korean Chem. Eng. Res., 46(6), 1130 (2008)
  23. Park SH, Kim SD, Korea J. Chem. Eng., 35, 243 (1997)
  24. Park SJ, Kim BJ, J. Korean Ind. Eng. Chem., 15(6), 611 (2004)
  25. Kim MJ, Lee KM, Lee S, Yeo SY, Choi SS, Lee YS, Appl. Chem. Eng., 28(1), 80 (2017)
  26. Lee S, Lee BJ, Park GB, Shin PK, Trans. Korean Inst. Electric. Eng., 62, 376 (2013)
  27. Jeong JY, Park J, Henins I, Babayan SE, Tu VJ, Selwyn GS, Ding G, Hicks RF, J. Phys. Chem. A, 104(34), 8027 (2000)
  28. Oda H, Yamashita A, Minoura S, Okamoto M, Morimoto T, J. Power Sources, 158(2), 1510 (2006)
  29. Othman FEC, Yusof N, Hasbullah H, Jaafar J, Ismail AF, Abdullah N, Nordin NAHM, Aziz F, Salleh WNW, J. Ind. Eng. Chem., 51, 281 (2017)
  30. Lee SW, Bae SK, Kwon JH, Na YS, An CD, Yoon YS, Song SK, J. Korean Inst. Electric. Eng., 27, 620 (2005)
  31. Boudou JP, Paredes JI, Cuesta A, Martinez-Alonso A, Tascon JMD, Carbon, 41, 41 (2003)
  32. Ratajczak H, J. Phys. Chem., 76, 3000 (1972)
  33. Moreno-Castilla C, Carbon, 42, 83 (2004)