화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.4, 499-503, August, 2019
양자우물구조에 의한 태양전지 단락전류 증가 효과와 이차이온 질량분석법에 의한 원소 정량 분석
Effect of Short Circuit Current Enhancement in Solar Cell by Quantum Well Structure and Quantitative Analysis of Elements Using Secondary Ion Mass Spectrometry
E-mail:
초록
GaInP/GaAs 양자우물(quantum well)구조를 N-AlGaInP/p-GaInP 이종 접합구조 태양전지에 도입하여 그 특성을 조사하고 양자우물구조가 없는 태양전지와 비교하였다. 에피층은 (100)평면이 (111)A 방향으로 6° 기울어진 p-GaAs 기판 위에 성장하였다. 태양전지 박막구조는 두께 400 nm의 N-AlGaInP 층에 590 nm의 p-GaInP와 210 nm의 GaInP/GaAs 양자 우물 구조(10 nm GaInP/5 nm GaAs의 14겹 구조)가 도입된 양자우물 태양전지 구조와 800 nm의 p-GaInP의 단일이종접합 구조로 이루어진다. 측정결과 1 × 1 mm2의 태양전지에서 단락전류밀도(Jsc)는 양자우물구조가 도입된 태양전지에서는 9.61 mA/cm2, 양자우물 구조가 없는 태양전지에서는 7.06 mA/cm2가 각각 측정되었다. 이차이온질량 분석법 (SIMS)과 외부양자효율(external quantum efficiency) 측정을 통하여 단락전류 증가에 의한 효율증가가 흡수 스펙트럼의 확대가 아닌 양자우물에 의한 carrier 재결합의 억제에 의한 효과임을 확인하였다.
Characteristics of solar cells employing a lattice matched GaInP/GaAs quantum well (QW) structure in a single N-AlGaInP/ p-InGaP heterojunction (HJ) were investigated and compared to those of solar cells without QW structure. The epitaxial layers were grown on a p-GaAs substrate with 6° off the (100) plane toward the <111>A. The heterojunction of solar cell consisted of a 400 nm N-AlGaInP, a 590 nm p-GaInP and 14 periods of a 10 nm GaInP/5 nm GaAs for QW structure and a 800 nm p-GaInP for the HJ structure (control cell). The solar cells were characterized after the anti-reflection coating. The short-circuit current density for 1 × 1 mm2 area was 9.61 mA/cm2 for the solar cell with QW structure while 7.06 mA/cm2 for HJ control cells. Secondary ion mass spectrometry and external quantum efficiency results suggested that the significant enhancement of Jsc and EQE was caused by the suppression of recombination by QW structure.
  1. France RM, Geisz JF, Garcia I, Steiner MA, et al., IEEE J. Photovolt., 5(1), 432 (2015)
  2. Jeong Y, Park DW, Lee JK, Lee J, Appl. Chem. Eng., 26(5), 526 (2015)
  3. Mazzer M, Barnham KWJ, Ballard IM, Bessiere A, Ioannides A, Johnson DC, Lynch MC, Tibbits TND, Roberts JS, Hill G, Calder C, Thin Solid Films, 511, 76 (2006)
  4. Sablon KA, Little JW, Mitin V, Sergeev A, Vagidov N, Reinhardt K, Nano Lett., 11(6), 2311 (2011)
  5. Hashem IE, Carlin CZ, Hagar BG, Colter PC, Bedair SM, J. Appl. Phys., 119(9), 095706 (2016)
  6. Sayed IEH, Carlin CZ, Hagar BG, Colter PC, Bedair SM, IEEE J. Photovolt., 6(4), 997 (2016)
  7. Bradshaw GK, Samberg JP, Carlin CA, Colter PC, Edmondson KM, Hong W, Fetzer C, Karam N, Bedair SM, IEEE J. Photovolt., 4(2), 614 (2014)
  8. Laghumavarapu RB, Liang BLL, Bittner ZS, Navruz TS, Hubbard SM, Norman A, Huffaker DL, Sol. Energy Mater. Sol. Cells, 114, 165 (2013)
  9. Mintairov SA, Kalyuzhnyy NA, Maximov MV, Nadtochiy AM, Zhukov AE, Semicond. Sci. Technol., 32(1), 015006 (2017)
  10. Kim JH, Shin HB, Korean J. Chem. Eng., 36(2), 305 (2019)
  11. Wu F, Lin H, Yang ZH, Liao MD, Wang ZL, Li ZP, Gao PQ, Ye JC, Shen WZ, Nano Energy, 58, 817 (2019)
  12. Toprasertpong K, Inoue T, Nakano Y, Sugiyama M, Sol. Energy Mater. Sol. Cells, 174, 146 (2018)
  13. Lynch MC, Ballard IM, Bushnell DB, Connolly JP, Johnson DC, Tibbits TND, Barnham KWJ, Ekins-Daukes NJ, Roberts JS, Hill G, Airey R, Mazzer M, J. Mater. Sci., 40(6), 1445 (2005)
  14. Bauhuis GJ, Mulder P, Haverkamp EJ, Huijben JCCM, Schermer JJ, Sol. Energy Mater. Sol. Cells, 93(9), 1488 (2009)
  15. Zhong SH, Huang ZG, Lin XX, Zeng Y, Ma YC, Shen WZ, Adv. Mater., 27(3), 555 (2015)
  16. Nelson J, Barnes J, Ekins-Daukes N, Kluftinger B, Tsui E, Barnham K, Foxon CT, Cheng T, Roberts JS, J. Appl. Phys., 82(12), 6240 (1997)
  17. McFarlane SC, Barnes J, Barnham KWJ, Tsui ESM, Button C, Roberts JS, J. Appl. Phys., 86(9), 5109 (1999)
  18. Luque A, Antolin E, Linares PG, Ramiro I, Mellor A, Tobias I, Marti A, Sol. Energy Mater. Sol. Cells, 112, 20 (2013)