화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.6, 731-736, December, 2019
Pt/TiO2의 H2 산화반응 및 SO2 피독과 재생 방안 연구
A Study on the H2 Oxidation over Pt/TiO2, SO2 Poisoning and Regeneration
E-mail:
초록
본 연구에서는 Pt/TiO2를 파우더 및 허니컴 형태로 제조하고, 촉매의 피독 물질인 SO2에 대한 영향과 재생 방안을 연구하였다. 이에 따라 Pt/TiO2의 SO2 노출 전.후 촉매 활성을 비교하였다. Pt/TiO2의 초기 활성은 주입되는 H2 농도(1~5%)에 비례하며, 촉매의 온도와 H2 전환율이 각각 최대 183 ℃와 95%로 나타났다. 2,800 ppm SO2를 파우더 및 허니컴 Pt/TiO2 에 노출시켰고, 이때 성능이 나타나지 않았고 촉매 표면에 0.69%의 황(S)이 잔류함을 확인하였다. 피독 촉매에 대한 세척 및 열처리 결과, 파우더 촉매는 세척에 의해 96% 이상의 H2 전환율을 나타냈고 허니컴 촉매는 H2 또는 air 분위기의 열처리를 통해 촉매 활성이 재생되어 95% 이상의 H2 전환율이 확인되었다.
In this article, Pt/TiO2 was manufactured in the form of powder and honeycomb, and the influence of SO2, which is a poisonous substance to catalyst, and regeneration method were investigated. The catalytic activity of Pt/TiO2 before and after the exposure to SO2 was also compared. The initial activity of Pt/TiO2 was proportional to the injected H2 concentration (1~5%). And the optimum temperature of the catalyst and conversion rate of H2 were 183 ℃ and 95%, respectively. It was confirmed that when exposing 2,800 ppm of SO2 to the powder and honeycomb Pt/TiO2, the performance of catalyst was not measurable and also 0.69% sulfur (S) remained on the catalyst surface. As a result of the cleaning and heat treatment for the poisoning catalyst, the activity of the powder catalyst exhibited a conversion rate of H2 greater than 96%. Whereas, the honeycomb catalyst showed a conversion rate of H2 greater than 95% when it was regenerated through the heat treatment of H2 or air atmosphere.
  1. Wallace LA, Risk Anal., 10, 59 (1990)
  2. Ait-Aissa S, Porcher JM, Arrigo AP, Lambre C, Toxicology, 145, 147 (2000)
  3. Guo H, Murray F, Clean Prod. Process., 2(1), 28 (2000)
  4. Kim YM, Harrad S, Harrison RM, Environ. Sci. Technol., 36, 5405 (2000)
  5. Zhang ZX, Jiang Z, Shangguan WF, Catal. Today, 264, 270 (2016)
  6. Brinkmann T, Santonja GG, Yukseler H, Roudier S, Sancho LD, Best Available Techniques (BAT) Reference Document for Common Waste Water and Waste Gas Treatment/Management Systems in the Chemical Sector Luxembourg, ISBN 9789279619960 (2016).
  7. Bond GC, Stud. Surf. Sci. Catal., 11, 1 (1982)
  8. Conner WC, Falconer JL, Chem. Rev., 95(3), 759 (1995)
  9. Huang HB, Leung DYC, J. Catal., 280(1), 60 (2011)
  10. Liotta LF, Appl. Catal. B: Environ., 100(3-4), 403 (2010)
  11. Kang YS, Kim SS, Seo PW, Lee SH, Hong SC, Appl. Chem. Eng., 22(6), 648 (2011)
  12. Kim SC, Kim GJ, Hong SC, Appl. Chem. Eng., 29(6), 657 (2018)
  13. Kinnunen NM, Kallinen K, Maunula T, Keenan M, Suvanto M, Catalysts, 9(5), 417 (2019)
  14. Hoyos LJ, Praliaud H, Primet M, Appl. Catal. A: Gen., 98, 125 (1993)
  15. Lampert JK, Kazi MS, Farrauto RJ, Appl. Catal. B: Environ., 14(3-4), 211 (1997)
  16. Colussi S, Arosio F, Montanari T, Busca G, Groppi G, Trovarelli A, Catal. Today, 155(1-2), 59 (2010)
  17. Gremrninger A, Lott P, Merts M, Casapu M, Grunwaldt JD, Deutschmann O, Appl. Catal. B: Environ., 218, 833 (2017)
  18. Luo JY, Kisinger D, Abedi A, Epling WS, Appl. Catal. A: Gen., 383(1-2), 182 (2010)
  19. Ordonez S, Hurtado P, Diez FV, Catal. Lett., 100(1-2), 27 (2005)
  20. Zhongyi S, Yufeng H, Jianming X, Xiaoming W, Weiping L, J. Rare Earths, 30(7), 676 (2012)
  21. Lee SJ, Hong SC, J. Korean Ind. Eng. Chem., 19(3), 259 (2008)