Applied Chemistry for Engineering, Vol.30, No.6, 731-736, December, 2019
Pt/TiO2의 H2 산화반응 및 SO2 피독과 재생 방안 연구
A Study on the H2 Oxidation over Pt/TiO2, SO2 Poisoning and Regeneration
E-mail:
초록
본 연구에서는 Pt/TiO2를 파우더 및 허니컴 형태로 제조하고, 촉매의 피독 물질인 SO2에 대한 영향과 재생 방안을 연구하였다. 이에 따라 Pt/TiO2의 SO2 노출 전.후 촉매 활성을 비교하였다. Pt/TiO2의 초기 활성은 주입되는 H2 농도(1~5%)에 비례하며, 촉매의 온도와 H2 전환율이 각각 최대 183 ℃와 95%로 나타났다. 2,800 ppm SO2를 파우더 및 허니컴 Pt/TiO2 에 노출시켰고, 이때 성능이 나타나지 않았고 촉매 표면에 0.69%의 황(S)이 잔류함을 확인하였다. 피독 촉매에 대한 세척 및 열처리 결과, 파우더 촉매는 세척에 의해 96% 이상의 H2 전환율을 나타냈고 허니컴 촉매는 H2 또는 air 분위기의 열처리를 통해 촉매 활성이 재생되어 95% 이상의 H2 전환율이 확인되었다.
In this article, Pt/TiO2 was manufactured in the form of powder and honeycomb, and the influence of SO2, which is a poisonous substance to catalyst, and regeneration method were investigated. The catalytic activity of Pt/TiO2 before and after the exposure to SO2 was also compared. The initial activity of Pt/TiO2 was proportional to the injected H2 concentration (1~5%). And the optimum temperature of the catalyst and conversion rate of H2 were 183 ℃ and 95%, respectively. It was confirmed that when exposing 2,800 ppm of SO2 to the powder and honeycomb Pt/TiO2, the performance of catalyst was not measurable and also 0.69% sulfur (S) remained on the catalyst surface. As a result of the cleaning and heat treatment for the poisoning catalyst, the activity of the powder catalyst exhibited a conversion rate of H2 greater than 96%. Whereas, the honeycomb catalyst showed a conversion rate of H2 greater than 95% when it was regenerated through the heat treatment of H2 or air atmosphere.
- Wallace LA, Risk Anal., 10, 59 (1990)
- Ait-Aissa S, Porcher JM, Arrigo AP, Lambre C, Toxicology, 145, 147 (2000)
- Guo H, Murray F, Clean Prod. Process., 2(1), 28 (2000)
- Kim YM, Harrad S, Harrison RM, Environ. Sci. Technol., 36, 5405 (2000)
- Zhang ZX, Jiang Z, Shangguan WF, Catal. Today, 264, 270 (2016)
- Brinkmann T, Santonja GG, Yukseler H, Roudier S, Sancho LD, Best Available Techniques (BAT) Reference Document for Common Waste Water and Waste Gas Treatment/Management Systems in the Chemical Sector Luxembourg, ISBN 9789279619960 (2016).
- Bond GC, Stud. Surf. Sci. Catal., 11, 1 (1982)
- Conner WC, Falconer JL, Chem. Rev., 95(3), 759 (1995)
- Huang HB, Leung DYC, J. Catal., 280(1), 60 (2011)
- Liotta LF, Appl. Catal. B: Environ., 100(3-4), 403 (2010)
- Kang YS, Kim SS, Seo PW, Lee SH, Hong SC, Appl. Chem. Eng., 22(6), 648 (2011)
- Kim SC, Kim GJ, Hong SC, Appl. Chem. Eng., 29(6), 657 (2018)
- Kinnunen NM, Kallinen K, Maunula T, Keenan M, Suvanto M, Catalysts, 9(5), 417 (2019)
- Hoyos LJ, Praliaud H, Primet M, Appl. Catal. A: Gen., 98, 125 (1993)
- Lampert JK, Kazi MS, Farrauto RJ, Appl. Catal. B: Environ., 14(3-4), 211 (1997)
- Colussi S, Arosio F, Montanari T, Busca G, Groppi G, Trovarelli A, Catal. Today, 155(1-2), 59 (2010)
- Gremrninger A, Lott P, Merts M, Casapu M, Grunwaldt JD, Deutschmann O, Appl. Catal. B: Environ., 218, 833 (2017)
- Luo JY, Kisinger D, Abedi A, Epling WS, Appl. Catal. A: Gen., 383(1-2), 182 (2010)
- Ordonez S, Hurtado P, Diez FV, Catal. Lett., 100(1-2), 27 (2005)
- Zhongyi S, Yufeng H, Jianming X, Xiaoming W, Weiping L, J. Rare Earths, 30(7), 676 (2012)
- Lee SJ, Hong SC, J. Korean Ind. Eng. Chem., 19(3), 259 (2008)