Applied Chemistry for Engineering, Vol.30, No.6, 726-730, December, 2019
칼륨이온 공존 수용액 내 칼슘이온 제거를 위한 제올라이트 개질 연구
A Study on the Modified Zeolite for the Removal of Calcium Ion in a Potassium Ion Coexistence Solution
E-mail:
초록
본 연구는 제올라이트를 이용한 칼슘이온 제거에 대한 것으로 시멘트 산업에서 발생하는 cement kiln dust를 이용한 CaCO3 제조 공정의 문제를 해결하기 위함이다. 칼슘이온을 제거하기 위하여 제올라이트를 개질하여 사용하였으며 결합 양이온 및 구조를 고려한 최적 제올라이트 선정, 칼슘이온 제거 성능 평가, 개질 용액의 종류 및 농도의 영향, K 공존 시 제거 선택도 평가에 대해 연구를 수행하였다. 5종의 제올라이트 중 13X 제올라이트의 칼슘 이온 제거 성능이 가장 우수함을 확인하였고 NaCl 대신 KCl을 개질 용액으로 사용하였을 때 칼슘이온 제거 성능이 증진되는 것을 확인할 수 있었다. 본 연구는 탄산화 공정의 문제 해결, 고농도의 KCl 회수 기술의 바탕이 될 것으로 판단된다.
The removal of calcium ions using zeolite to solve problems of the CaCO3 manufacturing process using cement kiln dust was investigated. To do so, a modified zeolite was employed and experiments were conducted to select the optimal zeolite type considered the binding cation and structure, evaluate the removal performance of calcium ions, the influence of the type and concentration of the modifying solution, and the removal selectivity when K coexists. Among five zeolites, 13X zeolite was found to have the best calcium ion removal performance, and it was confirmed that the removal performance was enhanced when KCl was used as a modifying solution instead of NaCl. This study is expected to be the basis for the solution of carbonation process and high concentration of KCl recovery technology.
- Hawkins GJ, Bhatty JI, O’Hare AT, Portland Cement Association, R&D No. 2737, Skokie, Illinois, USA (2003).
- Kim D, Kim MJ, J. Korea Soc. Waste. Manag., 32, 317 (2015)
- Ssangyong Cement Industrial Co., LTD., Recovery of potassium chloride from Cl by pass dust, Korea Patent 10-1561637 (2015).
- Huntzinger DN, Eatmon TD, J. Clean Prod., 17, 668 (2009)
- Korea Institute of Ceramic Engineering and Technology, Manufacturing method of potassium chloride using cement bypass dust, Korean Patent 10-1789701 (2017).
- Lee SM, Kim YJ, Choi CY, Lee JY, J. Korean Soc. Urban Environ., 18, 303 (2018)
- Youn MH, Park KT, Lee YH, Kang SP, Lee SM, Kim SS, Kim YE, Ko YN, Jeong SK, Lee WH, J. CO2 Util., 34, 325 (2019)
- Zeng K, Zhang DK, Prog. Energy Combust. Sci., 36(3), 307 (2010)
- Lee SK, Oh JI, Yoon SM, J. Korean Soc. Environ. Eng., 6, 259 (2002)
- Jung YJ, J. Wetl. Res., 21, 152 (2019)
- Ames LL, Am. Mineral., 46, 1120 (1961)
- Betz Laboratories, Betz Handbook of Industrial Water Conditioning, 9th ed., 50, Betz, Trevose, Pennsylvania, USA (1991).
- Xu YH, Nakajima T, Ohki A, J. Hazard. Mater., 92(3), 275 (2002)
- Abusafa A, Yucel H, Sep. Purif. Technol., 28(2), 103 (2002)
- Park KH, Suh JK, J. Korean Soc. Ind. Appl., 8, 113 (2005)
- Koon JH, Kaufman WJ, J. Water Pollut. Control Fed., 47, 448 (1975)
- Curkovic L, Cerjan-stefanovic S, Filipan T, Wat. Res., 31, 1379 (1997)
- Lee SG, A Study of Development of High-performance Feed using Ca2+ Exchanged Zeolite A, Master’s Thesis, Andong National University, Gyeongsang, Korea (2013).
- Fu K, Li Z, Xia Q, Zhong T, 2011 2nd International Conference on Environmental Engineering and Applications, IPCBEE, 17, 226-231 (2011).
- Lutz W, Zeolite Y, Adv. Mater. Sci. Eng, 2014, 1 (2014)
- Park MS, A Study of Carrier Manufacturing for NH4 +-N Ion Exchange using the Natural Zeolite, Master’s Thesis, Kyonggi University, Gyeonggi, Korea (2009).
- Ahn BG, Removal of Concentrated Calcium Ion in Industrial Wastewater using Natural Zeolite, Master’s Thesis, Chung Ang University, Seoul, Korea (2003).