화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.3, 369-376, May, 2020
변전위법 중합 과정에서 Polyaniline 핵 형성 및 성장 프로세스와 모폴로지 진화
Nucleation-Growth Processes and Morphological Evolution of Polyaniline during Potentiodynamic Polymerization
E-mail:,
초록
변전위법 중합 과정에서 폴리아닐린의 핵 형성 프로세스 및 성장 프로세스를 모폴로지 진화와 연관하여 확인하였다. 필름증착은 초기에 2차원 성장 프로세스를 통한 점진적 핵 형성이 이루어지고, 이어서 3차원 성장 프로세스를 통한 점진적 핵 형성이 지배적이었다. 초기에는, ITO 전극 상에 부드럽고 치밀한 폴리아닐린 필름이 증착되었지만, 초기 단계 후에는 섬유상의 3차원 다공성 네트워크 구조가 관찰되었다. 순환 전압전류의 사이클이 증가함에 따라, 필름은 큰 자유 부피를 가지며 더욱 거칠고 다공성인 3차원 네트워크 구조가 되면서 도핑 레벨이 증가되었다. 결국, 증가된 도핑 레벨과 전하 캐리어 이동성의 향상으로 인해 폴리아닐린 필름의 면저항이 낮아졌다.
The nucleation and growth processes associated with the morphological evolution of polyaniline during potentiodynamic polymerization have been investigated. Film deposition was first ruled by progressive nucleation with a two-dimensional growth process, and followed by progressive nucleation with a three-dimensional growth process. Initially, a smooth and compact polyaniline film was deposited on the indium tin oxide electrode, whereas a fibrous three-dimensional porous network structure was observed after the initial stage. As the number of cycles increased, the film became rougher and more porous three-dimensional network structure with higher free volume, resulting in higher doping levels. Finally, the increased doping levels and a higher charge carrier mobility lowered the sheet resistance of the polyaniline film.
  1. Heinze J, Frontana-Uribe BA, Ludwigs S, Chem. Rev., 110(8), 4724 (2010)
  2. Kellenberger A, Ambros D, Plesu N, Int. J. Electrochem. Sci., 9, 6821 (2014)
  3. Khdary NH, Abdesalam ME, El Enany G, J. Electrochem. Soc., 161, 63 (2014)
  4. Mello HJNPD, Mulato M, Synth. Met., 239, 66 (2018)
  5. Jafari Y, Ghoreishi SM, Shabani-Nooshabadi M, Synth. Met., 217, 220 (2016)
  6. Le TH, Kim YK, Yoon H, Polymers, 9, 150 (2017)
  7. Kim E, Kim JH, Bull. Korean Chem. Soc., 38, 850 (2017)
  8. Kim E, Kang N, Moon JJ, Choi M, Bull. Korean Chem. Soc., 37, 1445 (2016)
  9. Kim E, Choi M, Polym. Korea, 40(5), 728 (2016)
  10. Kim EO, Lee JI, Polym. Korea, 42(5), 834 (2018)
  11. Romero M, Del Valle MA, del Rio R, Diaz FR, Armijo F, Int. J. Electrochem. Sci., 7, 10132 (2012)
  12. Lee E, Kim E, Bull. Korean Chem. Soc., 34, 1 (2013)
  13. Kim E, J. Korean Chem. Soc., 59, 423 (2015)
  14. Romero M, Del Valle MA, del Rio R, Diaz FR, Armijo F, Dalchiele EA, J. Electrochem. Soc., 160, 125 (2013)
  15. Sazou D, Kourouzidou M, Pavlidou E, Electrochim. Acta, 52(13), 4385 (2007)
  16. Shen L, Huang X, Synth. Met., 245, 18 (2018)
  17. Das G, Yoon HH, Int. J. Nanomedicine, 10, 55 (2015)
  18. Fang FF, Dong YZ, Choi HJ, Polymer, 158, 176 (2018)
  19. Zhao J, Qin Z, Li T, Li Z, Zhou Z, Zhu M, Prog. Nat. Sci. Mater. Int., 25, 316 (2015)
  20. Karaoglan N, Bindal C, Eng. Sci. Technol. Int. J., 21, 1152 (2018)
  21. Liu C, Zhang JX, Shi GQ, Chen FE, J. Appl. Polym. Sci., 92(1), 171 (2004)
  22. Mu SL, Yang YF, J. Phys. Chem. B, 112(37), 11558 (2008)
  23. Huang W, Li J, Xu Y, Materials, 10, 1205 (2017)
  24. Gvozdenovic MM, Jugovic BZ, Stevanovic JS, Grgur BN, Hem. Ind., 68, 673 (2014)
  25. Qin Q, He F, Zhang W, J. Nanomater., 2016, 1 (2016)
  26. Massi M, Albonetti C, Facchini M, Cavallini M, Biscarini F, Adv. Mater., 18(20), 2739 (2006)
  27. Song E, Choi JW, Nanomaterials, 3, 498 (2013)
  28. Bohli N, Gmati F, Mohamed AB, Vigneras V, Miane JL, J. Phys. D-Appl. Phys., 42, 205404 (2009)
  29. Sanchez JAL, Diez-Pascual AM, Capilla RP, Diaz PG, Polymers, 11, 1032 (2019)