Polymer(Korea), Vol.44, No.4, 572-578, July, 2020
수소 이온 교환막 적용을 위한 나피온-폴리불화비닐리덴플로라이드 블렌드의 결정 구조 제어
Controlled Crystalline Structures of Nafion-Polyvinylidene Fluoride Blends for Proton Exchange Membranes
E-mail:
초록
전해질 고분자의 효과적인 수소이온 전달을 위해 대표적인 불소계 전해질 고분자 Nafion과 반결정성 강유전 고분자 polyvinylidene fluoride(PVDF)를 혼합하여 블렌드 전해질 막을 제조하였다. Nafion과 PVDF 분자 사이의 수소결합을 통하여 블렌드 막의 친수성 수소 이온 전달 채널을 더욱 발달시킴과 동시에 PVDF가 가지는 상 변화 현상을 활용하여, a 및 g 상 각각 경우에 대해 블렌드 막이 가지는 나노 구조와 막 물성 및 수소 이온 전도도의 상관관계를 파악하였다. 전해질 고분자의 나노 구조는 각각 atomic force microscopy과 small angle X-ray scattering를 통해 확인하였다. 최종적으로, Nafion-PVDF가 9:1의 혼합비율을 가지는 경우, PVDF가 g 상을 형성하였을 때, 증가된 이온전도도와 습윤팽창에 대한 안정성을 갖는 것을 확인하였다.
We present a controlled nanostructure of a proton conducting membrane, Nafion, by introducing a blend with a ferroelectric semi-crystalline polymer, polyvinylidene fluoride (PVDF). Phase transition between a and g phases of PVDF attributes the molecular structure of the blend membranes and their hydrophilic ionic channels by a strong hydrogen bonding between two polymers. The nanostructure of the membrane was investigated by atomic force microscopy and small angle X-ray scattering. Consequently, the controlled nanostructure of the blend membrane with a blending ratio of 9:1 for Nafion: g-PVDF allows enhanced proton conduction and increased physical stability for water swelling.
- Carrette L, Freidrich KA, Stimming U, Fuel Cells, 1, 5 (2001)
- Zhang H, Shen PK, Chem. Soc. Rev., 41, 2382 (2012)
- Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE, Chem. Rev., 104(10), 4587 (2004)
- Mauritz KA, Moore RB, Chem. Rev., 104(10), 4535 (2004)
- Wang R, Zhang W, He G, Gao P, J. Mater. Chem. A, 2, 16416 (2014)
- Ozmaian M, Haghdabadi R, Phys. Chem. Chem. Phys., 16, 3173 (2014)
- Klingele M, Breitwieser M, Zengerle R, Thiele S, J. Mater. Chem. A, 3, 11239 (2015)
- Liu FQ, Yi BL, Xing DM, Yu JR, Zhang HM, J. Membr. Sci., 212(1-2), 213 (2003)
- Zaton M, Roziere J, Jones DJ, Sustain. Energy Fuels, 1, 409 (2017)
- Zhu X, Zhang H, Liang Y, Zhang Y, Luo Q, Bi C, Yi B, J. Mater. Chem., 17, 386 (2007)
- Zhu XB, Zhang HM, Zhang Y, Liang YM, Wang XL, Yi BL, J. Phys. Chem. B, 110(29), 14240 (2006)
- Kusoglu A, Weber AZ, Chem. Rev., 117(3), 987 (2017)
- Cho KY, Eom JY, Jung HY, Choi NS, Lee YM, Park JK, Choi JH, Park KW, Sung YE, Electrochim. Acta, 50(2-3), 583 (2004)
- Li Y, Hui J, Kawchuk J, O'Brien A, Jiang Z, Hoorfar M, Fuel Cells, 19, 43 (2019)
- Kim HJ, Kim HJ, Shul YG, Han HS, J. Power Sources, 135(1-2), 66 (2004)
- Nawn G, Vezzu K, Negro E, Pace G, Park JW, Wycisk R, Cavinato G, Pintauro PN, Di Noto V, Phys. Chem. Chem. Phys., 21, 10357 (2019)
- Li HY, Liu YL, J. Mater. Chem. A, 2, 3783 (2014)
- Lovinger AJ, Science, 220, 1115 (1983)
- Martins P, Lopes AC, Lanceros-Mendezab S, Prog. Poly. Sci., 39, 683 (2014)
- Park YJ, Bae I, Kang SJ, Chang J, Park C, IEEE Trans. Dielectr. Electr. Insul., 17, 1135 (2010)
- Kang SJ, Park YJ, Bae I, Kim KJ, Kim HC, Bauer S, Thomas EL, Park C, Adv. Funct. Mater., 19(17), 2812 (2009)
- Wan C, Bowen CR, J. Mater. Chem. A, 5, 3091 (2017)
- Kim SJ, Shin JY, Yun YH, Lee DY, Yaa DH, Kim BY, Song YS, Polym. Korea, 43(5), 764 (2019)
- Cai X,Lei T, Sund D, Lin L, RSC Adv., 7, 15382 (2017)
- Starkweather HW, Macromolecules, 15, 320 (1982)
- Li JS, Yang X, Tang HL, Pan M, J. Membr. Sci., 361(1-2), 38 (2010)
- Yin C, Wang Z, Luo Y, Li J, Zhou Y, Zhang X, Zhang H, Fang P, He C, J. Phys. Chem. Solids, 120, 71 (2018)
- Peighambardoust SJ, Rowshanzamir S, Amjadi M, Int. J. Hydrog. Energy, 35(17), 9349 (2010)
- Alavijeh AS, Bhattacharya S, Thomas O, Chuy C, Yang YS, Zhang HX, Kjeang E, J. Power Sources, 427, 207 (2019)
- Khattra NS, Santare MH, Karlsson AM, Schmiedel T, Busby FC, Fuel Cells, 15, 178 (2015)
- van der Heijden PC, Rubatat L, Diat O, Macromolecules, 37(14), 5327 (2004)
- Tsao CS, Chang HL, Jeng US, Lin JM, Lin TL, Polymer, 46(19), 8430 (2005)