화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.90, 351-357, October, 2020
Enhancements in catalytic activity and duration of PdFe bimetallic catalysts and their use in direct formic acid fuel cells
E-mail:, ,
The palladium.iron based bimetallic catalysts (PdxFey/Cs) and facile synthetic method are introduced to enhance the catalytic activity and operational duration for direct formic acid fuel cells. To improve the properties of PdxFey/C catalysts, such as degree of PdFe alloy and its crystallinity, heat treatment is conducted at 600 °C. According to results, the Pd.Fe bond and Fe metal particle are formed after the heat treatment, while iron oxides and Pd particles are observed in the untreated samples. Electrochemical evaluations for measuring the formic acid oxidation reaction rate demonstrates heat treated Pd3Fe1/C (HT-Pd3Fe1/C) is the best catalysts of six samples which are synthesized by using different Pd to Fe ratios (3:1, 1:1, 1:3) before and after heat treatment. This is because the HT-Pd3Fe1/C has high Pd.Fe alloying and Pd contents. Through the heat treatment, the indirect formic acid oxidation reaction way is activated and the resistance to CO poisoning is significantly improved. The maximum power density of direct formic acid fuel cells using HT-Pd3Fe1/C whose open circuit voltage is 0.83 V is 137 mW cm-2, which is 1.6 and 1.9 times higher than that of direct formic acid fuel cells using untreated catalyst and Pd/C.
  1. Gamburzev S, Appleby AJ, J. Power Sources, 107(1), 5 (2002)
  2. Peighambardoust SJ, Rowshanzamir S, Amjadi M, Int. J. Hydrog. Energy, 35(17), 9349 (2010)
  3. Gerboni R, Salvador E, Energy, 34(12), 2223 (2009)
  4. Hwang BC, Oh SH, Lee MS, Lee DH, Park KP, Korean J. Chem. Eng., 35(11), 2290 (2018)
  5. Demirci UB, J. Power Sources, 169(2), 239 (2007)
  6. Ong BC, Kamarudin SK, Basri S, Int. J. Hydrog. Energy, 2, 10142 (2017)
  7. Yu X, Manthiram A, Energy Environ. Mater., 1, 13 (2018)
  8. Rosner L, Armbruster M, ACS Catal., 9, 2018 (2019)
  9. Choudhary AK, Pramanik H, Korean J. Chem. Eng., 36(10), 1688 (2019)
  10. Gavidia LMR, Sebastian D, Pasor E, Arico AS, Materials, 10, 580 (2017)
  11. Yang X, Xue J, Feng L, Chem. Commun., 55, 11247 (2019)
  12. Choi JH, Jeong KJ, Dong Y, Han J, Lim TH, Lee JS, Sung YE, J. Power Sources, 163(1), 71 (2006)
  13. Uhm S, Chung ST, Lee J, J. Power Sources, 178(1), 34 (2008)
  14. Choi EG, Song KH, An SR, Lee KY, Youn MH, Park KT, Jeong SK, Kim HJ, Korean J. Chem. Eng., 35(1), 73 (2018)
  15. Christwardana M, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 3009 (2017)
  16. Christwardana M, Ji JY, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 2916 (2017)
  17. Kang SH, Yoo KS, Chung YJ, Kwon YC, J. Ind. Eng. Chem., 62, 329 (2018)
  18. Christwadana M, Chung Y, Tannia DC, Kwon Y, J. Ind. Eng. Chem., 35, 2421 (2018)
  19. Eppinger J, Huang K, ACS Energy Lett., 2, 188 (2017)
  20. Novita FJ, Lee HY, Lee MY, Korean J. Chem. Eng., 35(4), 926 (2018)
  21. Pan YH, Zhang RM, Blair SL, Electrochem. Solid State Lett., 12(3), B23 (2009)
  22. Zhou Y, Liu JG, Ye JL, Zou ZG, Ye JH, Gu J, Yu T, Yang AD, Electrochim. Acta, 55(17), 5024 (2010)
  23. Uwitonze N, Chen YX, Chem. Sci. J., 8, 100016 (2017)
  24. Uhm S, Lee HJ, Lee J, Phys. Chem. Chem. Phys., 11, 9326 (2009)
  25. Baik SM, Han J, Kim J, Kwon Y, Int. J. Hydrog. Energy, 36(22), 14719 (2011)
  26. Yu XW, Pickup PG, J. Power Sources, 182(1), 124 (2008)
  27. Hu SZ, Munoz F, Noborikawa J, Haan J, Scudiero L, Ha S, Appl. Catal. B: Environ., 180, 758 (2016)
  28. Arya M, Niklasson J, Mohsenzadeh A, Bolton K, Theor. Chem. Acc., 137, 137 (2018)
  29. Herron JA, Scaranto J, Ferrin R, Li S, Mavrikakis M, ACS Catal., 4, 4434 (2014)
  30. Yu XW, Pickup PG, J. Appl. Electrochem., 41(5), 589 (2011)
  31. Liao H, Zhu J, Hou Y, Nanoscale, 42, 1049 (2017)
  32. Yang S, Yang J, Chung Y, Kwon Y, Int. J. Hydrog. Energy, 35, 17211 (2017)
  33. Moon S, Kwon BW, Chung Y, Kwon Y, J. Electrochem. Soc., 166(12), A2602 (2019)
  34. Matin MA, Jang JH, Kwon YU, J. Power Sources, 262, 356 (2014)
  35. Jin Y, Ma C, Shi M, Chu Y, Xu Y, Huang T, Huang Q, Miao Y, Int. J. Electrochem. Sci. 7, 7, 3399 (2012)
  36. Neergat M, Gunasekar V, Rahul R, J. Electroanal. Chem., 658(1-2), 25 (2011)
  37. Kang YS, Choi KH, Ahn D, Lee MJ, Baik J, Chung DY, Kim MJ, Lee SY, Kim M, Shin H, Lee KS, Sung YE, J. Power Sources, 303, 234 (2016)
  38. Liu Z, Fu G, Li J, Liu Z, Xu L, Sun D, Tang Y, Nano Res., 28, 4747 (2016)
  39. Shao MH, Sasaki K, Adzic RR, J. Am. Chem. Soc., 128(11), 3526 (2006)
  40. Sun JM, Karim AM, Zhang H, Kovarik L, Li XHS, Hensley AJ, McEwen JS, Wang Y, J. Catal., 306, 47 (2013)
  41. Wang H, Ji S, Linkov V, Pasupathi S, Wang R, Int. J. Electrochem. Sci., 7, 3390 (2012)
  42. Melendez-Gonzalez PC, Carrillo-Rodriguez JC, Morales-Acosta D, Mukherjee S, Rodriguez-Varela FJ, Int. J. Hydrog. Energy, 42(51), 30284 (2017)
  43. Liao MY, Hu Q, Zheng JB, Li YH, Zhou H, Zhong CJ, Chen BH, Electrochim. Acta, 111, 504 (2013)
  44. Ji J, Woo J, Chung Y, Joo SH, Kwon Y, Appl. Surf. Sci., 511, 145449 (2020)
  45. Zhou YW, Du CY, Han GK, Gao YZ, Yin GP, Electrochim. Acta, 217, 203 (2016)
  46. Juarez-Marmolejo L, Perez-Rodriguez S, de Oca-Yemha MGM, Palomar-Pardave M, Romero-Romo M, Ezeta-Mejia A, Morales-Gil P, Martinez-Huerta MV, Lazaro MJ, Int. J. Hydrog. Energy, 44(3), 1640 (2019)
  47. Wang E, Xue H, Tian Z, Xing W, Feng L, J. Power Sources, 375, 34 (2018)
  48. Wang F, Fong B, Yu X, Feng L, ACS Appl. Mater. Interfaces, 11, 9496 (2019)
  49. Baom Y, Liu H, Liu Z, Wang F, Feng L, Appl. Catal. B, 274, 119106 (2020)
  50. Li W, Zhou Y, Le Z, Liao M, Liu H, Na B, Wang B, Zhou H, Yan H, RSC Adv., 8, 35496 (2018)
  51. Shen LP, Li HZ, Lu L, Luo YF, Tang YW, Chen Y, Lu TH, Electrochim. Acta, 89, 497 (2013)
  52. Hyun K, Lee JH, Yoono CW, Cho Y, Kim L, Kwon Y, Synth. Met., 190, 48 (2015)
  53. Son SU, Jang Y, Park J, Na HB, Park HM, Yun HJ, Lee J, Hyeon T, J. Am. Chem. Soc., 126(16), 5026 (2004)
  54. Harshini D, Kwon Y, Han J, Yoon SP, Nam SW, Lim TH, Korean J. Chem. Eng., 27(2), 480 (2010)
  55. Wang S, Chang J, Xue H, Xing W, Feng L, Chem. Electro. Chem., 4, 1243 (2017)
  56. Hosseini H, Mahyari M, Bagheri A, Shaabani A, J. Power Sources, 247, 70 (2014)
  57. Zhang L, Wan L, Ma Y, Chen Y, Zhou Y, Tang Y, Lu T, Appl. Catal. B: Environ., 138-139, 229 (2013)
  58. Hien PTT, Jo C, Lee J, Kwon Y, RSC Adv., 6, 17574 (2016)
  59. Frattini D, Accardo G, Kwon Y, J. Membr. Sci., 599, 117843 (2020)
  60. Frattini D, Accardo G, Duarte KDZ, Kim D, Kwon Y, Appl. Energy, 261, 114391 (2020)
  61. Yang JW, Yang SW, Chung YJ, Kwon YC, Korean J. Chem. Eng., 37(1), 176 (2020)
  62. Lee HW, Han CH, Park TH, Korean J. Chem. Eng., 37(4), 577 (2020)
  63. Baik SM, Kim J, Han J, Kwon Y, Int. J. Hydrog. Energy, 36(19), 12583 (2011)
  64. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF, Science, 355, eaad4998 (2017).
  65. Zhou W, Lee JY, J. Phys. Chem. C, 112, 3789 (2008)
  66. Mehaddene T, Kentzinger E, Hennion B, Tanaka K, Numakura H, Marty A, Parasote V, Cadeville MC, Zemirli M, Pierron-Bohnes V, Phys. Rev. B, 69, 024304 (2004)
  67. Miyake H, Okada T, Samjeske G, Osawa M, Phys. Chem. Chem. Phys., 10, 3662 (2008)
  68. Tang Y, Edelmann RE, Zou S, Nanoscle, 6, 5630 (2014)
  69. Zhang LL, Ding LX, Luo Y, Zeng YH, Wang SQ, Wang HH, Chem. Eng. J., 347, 193 (2018)