화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.91, 347-354, November, 2020
The effect of viscosity ratio on drop pinch-off dynamics in two-fluid flow
E-mail:
Drop pinch-off draws a lot of interest from scientists and engineers because of widely practical applications as well as the fascinating mechanism of finite-time singularities and self-similar behavior. This work experimentally investigates the effect of viscosity ratio on the local pinch-off mechanism of liquid drops in both air and viscous fluids, with a high-speed camera. The results show that for 56 ≤ λ ≤ 6.3 × 103 and 0.009 ≤ λ ≤ 0.061, drop pinch-off exhibits self-similar profile which is asymmetric and conical away from hmin. Drop pinch-off in air with low viscosity ratios shows either in inertial regime (I) or transition from inertial to viscous regime (I→V). But the kinetics undergoes the inertial regime (I) to inertial-viscous regime (IV) through an intermediate viscous regime (V) when the viscosity ratio becomes larger. Drop pinch-off in viscous fluids displays the transition from inertial to viscous regime (I→V). These results agree well with Eggers’s universal solution until it becomes unstable and the previous literature. The viscosity ratio indeed affects the drop pinch-off dynamics as well as interface deformation. Our experiments enrich the understanding of the interaction between the internal and external fluids on drop pinch-off behavior near the singularity point.
  1. Valette R, Hachem E, Khalloufi M, Pereira AS, Mackley MR, Butler SA, J. Non-Newton. Fluid Mech., 263, 130 (2019)
  2. Jiang XF, Wu YN, Ma YG, Li HZ, Chem. Eng. Res. Des., 115, 262 (2016)
  3. Gimenez-Ribes G, Sagis LMC, Habibi M, Food Hydrocolloids, 103, 105616 (2020)
  4. Ma R, Fu T, Zhang Q, Zhu C, Ma Y, Li HZ, J. Ind. Eng. Chem., 54, 408 (2017)
  5. Zhu P, Kong T, Lei L, Tian X, Kang Z, Wang L, Sci. Rep., 6, 21527 (2016)
  6. Cubaud T, Jose BM, Darvishi S, Sun R, Int. J. Multi. Flow, 39, 29 (2012)
  7. Keller JB, Miksis MJ, SIAM J. Appl. Math., 43, 268 (1983)
  8. Peregrine DH, Shoker G, Symon A, J. Fluid Mech., 212, 25 (1990)
  9. Day RF, Hinch EJ, Lister JR, Phys. Rev.Lett., 80, 704 (1998)
  10. Chen YJ, Steen PH, J. Fluid Mech., 341, 245 (1997)
  11. Henderson DM, Pritchard WG, Smolka LB, Phy. Fluids, 9, 3188 (1997)
  12. Dinic J, Jimenez LN, Sharma V, Lab A Chip., 17, 460 (2017)
  13. Castrejon-Pita JR, Castrejon-Pita AA, Thete SS, Sambath K, Hutchings IM, Hinch J, Lister JR, Basaran OA, Proc. Nat. Acad. Sci., 112(15), 4582 (2015)
  14. Chen AU, Notz PK, Basaran OA, Phys. Rev. Lett., 88, 174501 (2002)
  15. Li Y, Sprittles JE, J. Fluid Mech., 797, 29 (2016)
  16. Doshi P, Cohen I, Zhang WW, Siegel M, Howell P, Basaran OA, Science, 302, 1185 (2003)
  17. Lister JR, Stone HA, Phys. Fluids, 10, 2758 (1998)
  18. Pan Y, Suga K, J. Fluids Eng., 125, 922 (2003)
  19. Cohen I, Brenner MP, Eggers J, Nagel SR, Phys. Rev. Lett., 83, 1147 (1999)
  20. Zhang WW, Lister JR, Phys. Rev. Lett., 83(6), 1151 (1999)
  21. Jiang XF, Zhu CY, Ma YG, Li HZ, Adv. Mater. Interf., 4, 170019 (2017)
  22. Dietrich N, Poncin S, Li HZ, Exp. Fluids, 50, 1293 (2011)
  23. Kovalchuk NM, Jenkinson H, Miller R, Simmons MJH, J. Colloid Interface Sci., 516, 182 (2018)
  24. Dastyar P, Salehi MS, Firoozabadi B, Afshin H, J. Ind. Eng. Chem., 89, 183 (2020)
  25. Eggers J, Rev. Mod. Phys., 69(3), 865 (1997)
  26. Smolka LB, Belmonte A, J. Non-Newton. Fluid Mech., 115(1), 1 (2003)
  27. Shi XD, Brenner MP, Nagel SR, Science, 265(5169), 219 (1994)
  28. Burton JC, Taborek P, Phys. Rev. Lett., 101, 214502 (2008)
  29. Zhu PA, Wang LQ, Chem. Eng. Sci., 196, 333 (2019)
  30. Chen AU, Notz PK, Basaran OA, Phys. Rev. Lett., 88, 174501 (2002)
  31. Eggers J, Phys. Rev. Lett., 71, 3458 (1993)
  32. Burton JC, Taborek P, Phys. Rev. Lett., 98, 224502 (2007)
  33. Liao YC, Subramani HJ, Franses EI, Basaran OA, Langmuir, 20(23), 9926 (2004)