Journal of Industrial and Engineering Chemistry, Vol.91, 347-354, November, 2020
The effect of viscosity ratio on drop pinch-off dynamics in two-fluid flow
E-mail:
Drop pinch-off draws a lot of interest from scientists and engineers because of widely practical applications as well as the fascinating mechanism of finite-time singularities and self-similar behavior. This work experimentally investigates the effect of viscosity ratio on the local pinch-off mechanism of liquid drops in both air and viscous fluids, with a high-speed camera. The results show that for 56 ≤ λ ≤ 6.3 × 103 and 0.009 ≤ λ ≤ 0.061, drop pinch-off exhibits self-similar profile which is asymmetric and conical away from hmin. Drop pinch-off in air with low viscosity ratios shows either in inertial regime (I) or transition from inertial to viscous regime (I→V). But the kinetics undergoes the inertial regime (I) to inertial-viscous regime (IV) through an intermediate viscous regime (V) when the viscosity ratio becomes larger. Drop pinch-off in viscous fluids displays the transition from inertial to viscous regime (I→V). These results agree well with Eggers’s universal solution until it becomes unstable and the previous literature. The viscosity ratio indeed affects the drop pinch-off dynamics as well as interface deformation. Our experiments enrich the understanding of the interaction between the internal and external fluids on drop pinch-off behavior near the singularity point.
- Valette R, Hachem E, Khalloufi M, Pereira AS, Mackley MR, Butler SA, J. Non-Newton. Fluid Mech., 263, 130 (2019)
- Jiang XF, Wu YN, Ma YG, Li HZ, Chem. Eng. Res. Des., 115, 262 (2016)
- Gimenez-Ribes G, Sagis LMC, Habibi M, Food Hydrocolloids, 103, 105616 (2020)
- Ma R, Fu T, Zhang Q, Zhu C, Ma Y, Li HZ, J. Ind. Eng. Chem., 54, 408 (2017)
- Zhu P, Kong T, Lei L, Tian X, Kang Z, Wang L, Sci. Rep., 6, 21527 (2016)
- Cubaud T, Jose BM, Darvishi S, Sun R, Int. J. Multi. Flow, 39, 29 (2012)
- Keller JB, Miksis MJ, SIAM J. Appl. Math., 43, 268 (1983)
- Peregrine DH, Shoker G, Symon A, J. Fluid Mech., 212, 25 (1990)
- Day RF, Hinch EJ, Lister JR, Phys. Rev.Lett., 80, 704 (1998)
- Chen YJ, Steen PH, J. Fluid Mech., 341, 245 (1997)
- Henderson DM, Pritchard WG, Smolka LB, Phy. Fluids, 9, 3188 (1997)
- Dinic J, Jimenez LN, Sharma V, Lab A Chip., 17, 460 (2017)
- Castrejon-Pita JR, Castrejon-Pita AA, Thete SS, Sambath K, Hutchings IM, Hinch J, Lister JR, Basaran OA, Proc. Nat. Acad. Sci., 112(15), 4582 (2015)
- Chen AU, Notz PK, Basaran OA, Phys. Rev. Lett., 88, 174501 (2002)
- Li Y, Sprittles JE, J. Fluid Mech., 797, 29 (2016)
- Doshi P, Cohen I, Zhang WW, Siegel M, Howell P, Basaran OA, Science, 302, 1185 (2003)
- Lister JR, Stone HA, Phys. Fluids, 10, 2758 (1998)
- Pan Y, Suga K, J. Fluids Eng., 125, 922 (2003)
- Cohen I, Brenner MP, Eggers J, Nagel SR, Phys. Rev. Lett., 83, 1147 (1999)
- Zhang WW, Lister JR, Phys. Rev. Lett., 83(6), 1151 (1999)
- Jiang XF, Zhu CY, Ma YG, Li HZ, Adv. Mater. Interf., 4, 170019 (2017)
- Dietrich N, Poncin S, Li HZ, Exp. Fluids, 50, 1293 (2011)
- Kovalchuk NM, Jenkinson H, Miller R, Simmons MJH, J. Colloid Interface Sci., 516, 182 (2018)
- Dastyar P, Salehi MS, Firoozabadi B, Afshin H, J. Ind. Eng. Chem., 89, 183 (2020)
- Eggers J, Rev. Mod. Phys., 69(3), 865 (1997)
- Smolka LB, Belmonte A, J. Non-Newton. Fluid Mech., 115(1), 1 (2003)
- Shi XD, Brenner MP, Nagel SR, Science, 265(5169), 219 (1994)
- Burton JC, Taborek P, Phys. Rev. Lett., 101, 214502 (2008)
- Zhu PA, Wang LQ, Chem. Eng. Sci., 196, 333 (2019)
- Chen AU, Notz PK, Basaran OA, Phys. Rev. Lett., 88, 174501 (2002)
- Eggers J, Phys. Rev. Lett., 71, 3458 (1993)
- Burton JC, Taborek P, Phys. Rev. Lett., 98, 224502 (2007)
- Liao YC, Subramani HJ, Franses EI, Basaran OA, Langmuir, 20(23), 9926 (2004)