화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.1, 68-74, February, 2021
기체확산층 압축률과 상대습도가 고분자전해질 연료전지 성능에 미치는 영향
Effect of Gas Diffusion Layer Compression and Inlet Relative Humidity on PEMFC Performance
E-mail:
초록
고분자전해질 연료전지 성능에서 기체확산층 압축률은 계면 접촉 저항과 전극으로의 반응물 전달 및 전극 내 수분 포화도에 영향을 주는 중요한 변수이다. 본 연구에서는 국내 상용 제품인 JNT20-A3를 이용하여 기체확산층 압축률에 대한 연료전지의 성능 평가를 수행하였다. 전극면적 25 cm2 단위 전지를 이용하여 상대습도 조건과 압축률에 대한 전기화학 임피던스 분광법과 분극 곡선을 측정하였다. 기체확산층을 18.6%에서 38.1%으로 압축시켰을 때 상대습도 100, 25% 조건에서 ohmic 저항이 각각 8, 30 mΩ.cm2이 감소하여 기체확산층 압축률이 증가할수록 접촉 저항이 감소하는 것과 동시에 막의 수화도가 증가하는 것을 확인하였다. 상대습도 조건에 대한 ohmic 저항의 변화 경향을 통하여, 압축률을 증가시켰을 때 기체확산층의 기공이 감소하여 공기극에서의 물 역확산과 전해질 막의 수화도가 증가하는 것을 확인하였다.
Gas diffusion layer (GDL) compression is important parameter of polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on contact resistance, reactants transfer to electrode, water content in membrane and electrode assembly (MEA). In this study, the effect of GDL compression on fuel cell performance was investigated for commercial products, JNT20-A3. Polarization curve and electrochemical impedance spectroscopy was performed at different relative humidity and compression ratio using electrode area of 25 cm2 unit cell. The contact resistance was reduced to 8, 30 mΩ.cm2 and membrane hydration was increased as GDL compression increase from 18.6% to 38.1% at relative humidity of 100 and 25%, respectively. It was identified through ohmic resistance change at relative humidity conditions that as GDL compression increased, water back-diffusion from cathode and electrolyte membrane hydration was increased because GDL porosity was decreased.
  1. Chang WR, Hwang JJ, Weng FB, Chan SH, J. Power Sources, 168, 149 (2007)
  2. Khetabi E, Bouziane K, Zamel N, Francois X, Meyer Y, Candusso D, J. Power Sources, 424, 8 (2019)
  3. Mason TJ, Millichamp J, Neville TP, El-kharouf A, Pollet BG, Brett DJL, J. Power Sources, 219, 52 (2012)
  4. Banerjee R., Hinebaugh J., Liu H., Yip R., Ge N., Bazylak A., Int. J. Hydrog. Energy, 41(33), 14885 (2016)
  5. Totzke C, Gaiselmann G, Osenberg M, Arlt T, Markotter H, Hilger A, Kupsch A, Muller BR, Schmidt V, Lehnert W, Manke I, J. Power Sources, 324, 625 (2016)
  6. Lee J, Yip R, Antonacci P, Ge N, Kotaka T, Tabuchi Y, Bazylak A, J. Electrochem. Soc., 162(7), F669 (2015)
  7. Nanadegani FS, Lay EN, Sunden B, Int. J. Energy Res., 43(1), 274 (2019)
  8. Lee J, Chevalier S, Banerjee R, Antonacci P, Ge N, Yip R, Kotaka T, Tabuchi Y, Bazylak A, Electrochim. Acta, 236, 161 (2017)
  9. Kim T, Lee S, Park H, Int. J. Hydrog. Energy, 35(16), 8631 (2010)
  10. Deevanhxay P, Sasabe T, Tsushima S, Hirai S, Electrochem. Commun., 34, 239 (2013)
  11. Blanco M, Wilkinson DP, Int. J. Hydrog. Energy, 39(29), 16390 (2014)
  12. Ge JB, Higier A, Liu HT, J. Power Sources, 159(2), 922 (2006)
  13. Lin JH, Chen WH, Su YJ, Ko TH, Fuel, 87(12), 2420 (2008)
  14. Carcadea E, Varlam M, Ingham DB, Patularu LG, Marinoiu A, Ion-Ebrasu D, Stefanescu I, J. Electrochem. Soc., 75, 167 (2016)
  15. Simon C, Hasche F, Gasteiger HA, J. Electrochem. Soc., 164(6), F591 (2017)
  16. Khajeh-Hosseini-Dalasm N, Sasabe T, Tokumasu T, Pasaogullari U, J. Power Sources, 266, 213 (2014)
  17. Ince UU, Markotter H, George MG, Liu H, Ge N, Lee J, Alrwashdeh SS, Zeis R, Messerschmidt M, Scholta J, Bazylak A, Manke I, Int. J. Hydrog. Energy, 43(1), 391 (2018)
  18. Wu Y, Cho JIS, Lu X, Rasha L, Neville TP, Millichamp J, Ziesche R, Kardjilov N, Markotter H, Shearing P, Brett DJL, J. Power Sources, 412, 597 (2019)
  19. Wang L, Husar A, Zhou TH, Liu HT, Int. J. Hydrog. Energy, 28(11), 1263 (2003)
  20. Santarelli MG, Torchio MF, Energy Conv. Manag., 48(1), 40 (2007)
  21. Haji S, Renew. Energy, 36(2), 451 (2011)
  22. Kim J, Lee S, Srinivasan S, J. Electrochem. Soc., 8, 2670 (1995)
  23. Fraser SD, Hacker V, J. Appl. Electrochem., 38(4), 451 (2008)
  24. Hao D, Shen J, Hou Y, Zhou Y, Wang H, Int. J. Chem. Eng., 16, 1 (2016)