Journal of Industrial and Engineering Chemistry, Vol.97, 356-367, May, 2021
Separation and recognition characteristics by MIP manufacture using supercritical CO2 technology
E-mail:
This research is focused on the experiment of molecular imprinting polymers by supercritical solvent technology as friendly-environmental process. Methyl methacrylate (MMA) monomer, methacrylic acid (MAA) monomer, VA (vanillic acid) with template and EGDMA (ethylene glycol dimethacrylate) with cross-linking agent were used for molecular imprinting polymers composition. The template has been eliminated by the Soxhlet extraction method, and the rate of elimination is ca. 95-98 %. The adsorption capacities of the synthesized molecular imprinting polymers were estimated using the kinetics and isotherms of restraint, Scatchard investigation, affinity distributions, the materials adsorption with template-like structure, α (selectivity parameter), and HPLC (high performance liquid chromatography) analysis. The evaluation result shows that the manufactured molecular imprinting polymers have highly selectivity and separation ability. It was also confirmed that there was a difference between the adsorption amounts with EGDMA contents. In this study, prepared molecular imprinting polymers had an advantage in adsorption selectivity where VA and its structural analog materials are present. These results show that the molecular imprinting polymers selectivity was increased using control the crosslinking agent.
Keywords:Supercritical technology;Vanillic acid;Molecularly imprinting polymers;Recognition properties;Adsorption capacity
- Barroso T, Viveiros R, Temtem M, Casimiro R, Do Rego AMB, Aguiar-Ricardo A, ACS Macro Lett., 1, 356 (2012)
- McHugh MA, Krukonis VJ, Supercritical Fluid Extraction, 2nd ed., Butter-worth-Heinemann, Stoneham, 1994.
- Poling BE, Prausnitz JM, O’Connell JP, The Properties of Liquids and Gases, 5th ed., McGraw-Hill, New York, 2001.
- Marcelo G, Ferreira IC, Viveiros R, Casimiro T, Int. J. Pharm., 542, 125 (2018)
- Pichon V, Chapuis-Hugon F, Anal. Chim. Acta, 622, 48 (2008)
- Figueiredo L, Erny GL, Santos L, Alves A, Talanta, 146, 754 (2016)
- Yoshida M, Uezu K, Goto M, Furusaki S, Macromolecules, 32(4), 1237 (1999)
- Tan CJ, Tong YW, Anal. Bioanal. Chem., 389, 369 (2007)
- Sreenivasan K, J. Mater. Sci., 42(17), 7575 (2007)
- Xie XY, Hu Q, Ke RF, Zhen XY, Bu YS, Wang SC, Chem. Eng. J., 371, 130 (2019)
- Qian K, Deng Q, Fang G, Wang J, Pan M, Wang S, Pu Y, Biosen. Bioelectron., 79, 359 (2016)
- Xie L, Zhou L, Li L, Xie X, Li Y, J. Appl. Polym. Sci., 136, 47415 (2019)
- Wulff G, Chem. Rev., 102(1), 1 (2002)
- Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN, J. Am. Chem. Soc., 117(27), 7105 (1995)
- Alexiadou DK, Maragou NC, Thomaidis NS, Theodoridis GA, Koupparis MA, J. Sep. Sci., 31, 2272 (2008)
- Ye L, Cormack P, Mosbach K, Anal. Commun., 36, 35 (1999)
- BelBruno JJ, Chem. Rev., 19, 94 (2019)
- Huang S, Xu J, Zheng J, Zhu F, Xie L, Ouyang G, Anal. Bioanal. Chem., 410, 3991 (2018)
- Rebocho S, Cordas CM, Viveiros R, Casimiro T, J. Supercrit. Fluids, 135, 98 (2018)
- Inoue M, Suzuki R, Sakaguchi N, Li Z, Takeda T, Ogihara Y, Jiang BY, Chen Y, Bio. Pharm. Bull., 18, 1526 (1995)
- Kumar K, Narayanan N, Gupta S, Food Chem., 255, 81 (2018)
- Tana S, Yu H, He Y, Wang M, Liu G, Hong S, Yan F, Wang Y, Wang MQ, Li T, Wang J, EI-Atyd AMA, Hacımuftuoglue A, She Y, J. Chromatogr. B, 1108, 65 (2019)
- Puoci F, Scoma A, Cirillo G, Bertin L, Fava F, Picci N, Chem. Eng. J., 198-199, 529 (2012)
- Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN, J. Am. Chem. Soc., 117(27), 7105 (1995)
- Umpleby RJ, Rushton GT, Shah RN, Rampey AM, Bradshaw JC, Berch JK, Shimizu KD, Macromolecules, 34(24), 8446 (2001)
- Stanley BJ, Szabelski P, Chen YB, Sellergren B, Guiochon G, Langmuir, 19(3), 772 (2003)