화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.3, 243-252, June, 2021
양극산화를 사용한 TiO2 마이크로/나노 구조체 제조 및 리튬 이온 전지 음극재로의 응용 연구
Anodically prepared TiO2 Micro and Nanostructures as Anode Materials for Lithium-ion Batteries
E-mail:
초록
전기자동차(EV) 및 중대형 에너지 저장 장치(ESS)의 활용을 위한 차세대 에너지 저장 장치에 대한 요구가 증가함에 따라, 높은 출력 및 안정성 등의 특성을 갖는 리튬 이온 전지 개발이 시급한 과제로 떠오르고 있다. 리튬 이온 이차전지의 성능은 주로 전극 재료의 물리/화학적 특성에 의해 결정되는데, TiO2는 우수한 안정성 및 높은 안정성, 친환경적 특성으로 인해 현재 상용화된 탄소계 음극재를 대체할 수 있는 물질로 높은 관심을 받고 있다. 특히, 양극산화를 통해 제조된 자기 정렬된 TiO2 마이크로 및 나노 구조는 차세대 리튬 이온 이차 전지의 유망한 음극 소재 물질로 많은 연구가 이루어지고 있다. 본 총설 논문에서는 양극산화를 통한 TiO2 나노 튜브 및 마이크로콘 구조 메커니즘 및 구조발달에 영향을 미치는 인자에 대한 설명을 다루었다. 또한, TiO2의 낮은 전기전도도 및 용량 한계를 극복하기 위한TiO2 기반 복합체를 리튬 이온 이차 전지의 음극재로 활용한 연구를 소개하였다.
With increasingly strict requirements for advanced energy storage devices in electric vehicles (EVs) and stationary energy storage systems (EES), the development of lithium-ion batteries (LIBs) with high power density and safety has become an urgent task. Because the performance of LIBs is determined primarily by the physicochemical characteristics of its electrode material, TiO2, owing to its excellent stability, high safety levels, and environmentally friendly properties, has received significant attention as an alternative material for the replacement of commercial carbon-based anode materials. In particular, self-organized TiO2 micro and nanostructures prepared by anodization have been intensively investigated as promising anode materials. In this review, the mechanism for the formation of anodic TiO2 nanotubes and microcones and the parameters that influence their morphology are described. Furthermore, recent developments in anodic TiO2-based composites as anode electrodes for LIBs to overcome the limitations of low conductivity and specific capacity are summarized.
  1. Madian M, Eychmuller A, Giebeler L, Batteries, 4, 7 (2018)
  2. Scrosati B, Garche J, J. Power Sources, 195(9), 2419 (2010)
  3. Zuo X, Zhu J, Muller-Buschbaum P, Cheng YJ, Nano Energy, 31, 113 (2017)
  4. Whittingham MS, Chem. Rev., 104(10), 4271 (2004)
  5. Fergus JW, J. Power Sources, 195(4), 939 (2010)
  6. Islam J, Chowdhury FI, Uddin J, Amin R, Uddin J, RSC Adv., 11, 5958 (2021)
  7. Wang CS, Appleby AJ, Little FE, J. Electroanal. Chem., 497(1-2), 33 (2001)
  8. Wu Y, Jiang C, Wan C, Tsuchida E, Electrochem. Commun., 2, 272 (2000)
  9. Uhlmann C, Illig J, Ender M, Schuster R, Ivers-Tiffee E, J. Power Sources, 279, 428 (2015)
  10. Zhang C, Liu ST, Qi YC, Cui FM, Yang XJ, Chem. Eng. J., 351, 825 (2018)
  11. Opra DP, Gnedenkov SV, Sinebryukhov SL, J. Power Sources, 442, 227225 (2019)
  12. Weng Z, Guo H, Liu X, Wu S, Yeung K, Chu PK, RSC Adv., 3, 24758 (2013)
  13. Huang C, Zhao SX, Peng H, Lin YH, Nan CW, Cao GZ, J. Mater. Chem. A, 6, 14339 (2018)
  14. Wang Y, Zhang YX, Yang WJ, Jiang S, Hou XW, Guo R, Liu W, Huang P, Lu J, Gu HT, Xie JY, J. Electrochem. Soc., 166(3), A5014 (2018)
  15. Wang S, Lee PK, Yang X, Rogach AL, Armstrong AR, Denis Y, Mater. Today Energy, 9, 295 (2018)
  16. Yin ZF, Wu L, Yang HG, Su YH, PCCP, 15, 4844 (2013)
  17. Dachille F, Simons P, Roy R, Am. Min., 53, 1929 (1968)
  18. van de Krol R, Goossens A, Schoonman J, J. Phys. Chem. B, 103(34), 7151 (1999)
  19. Zhang HZ, Banfield JF, Chem. Rev., 114(19), 9613 (2014)
  20. Macak J, Schmidt-Stein F, Schmuki P, Electrochem. Commun., 9, 1783 (2007)
  21. Bae C, Yoo H, Kim S, Lee K, Kim J, Sung MM, Shin H, Chem. Mater., 20, 756 (2008)
  22. Choi MG, Lee YG, Song SW, Kim KM, Electrochim. Acta, 55(20), 5975 (2010)
  23. Ribbens S, Meynen V, Van Tendeloo G, Ke X, Mertens M, Maes B, Cool P, Vansant E, Microporous Mesoporous Mater., 114, 401 (2008)
  24. Arruda LB, Santos CM, Orlandi MO, Schreiner WH, Lisboa-Filho PN, Ceram. Int., 41, 2884 (2015)
  25. Tsuchiya H, Macak JM, Sieber I, Schmuki P, Small, 1, 722 (2005)
  26. Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M, Surf. Interface Anal., 27, 629 (1999)
  27. Gong D, Grimes CA, Varghese OK, Hu W, Singh R, Chen Z, Dickey EC, J. Mater. Res., 16, 3331 (2001)
  28. Yang DJ, Kim HG, Cho SJ, Choi WY, Mater. Lett., 62, 775 (2008)
  29. Tsuchiya H, Macak JM, Taveira L, Balaur E, Ghicov A, Sirotna K, Schmuki P, Electrochem. Commun., 7, 576 (2005)
  30. Tsuchiya H, Macak JM, Ghicov A, Taveira L, Schmuki P, Corrosion Sci., 47, 3324 (2005)
  31. Li YC, Ma Q, Han J, Ji LL, Wang JX, Chen JY, Wang YQ, Appl. Surf. Sci., 297, 103 (2014)
  32. Sreekantan S, Saharudin KA, Wei LC, IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing, pp. 012002 (2011).
  33. Regonini D, Bowen CR, Jaroenworaluck A, Stevens R, Mater. Sci. Eng. R-Rep., 74, 377 (2013)
  34. Lohrengel M, Mater. Sci. Eng. R-Rep., 11, 243 (1993)
  35. Jaroenworaluck A, Regonini D, Bowen CR, Stevens R, Allsopp D, J. Mater. Sci., 42(16), 6729 (2007)
  36. Yoo H, Kim M, Kim YT, Lee K, Choi J, Catalysts, 8, 555 (2018)
  37. Thompson GE, Thin Solid Films, 297(1-2), 192 (1997)
  38. Berger S, Albu SP, Schmidt-Stein F, Hildebrand H, Schmuki P, Hammond JS, Paul DF, Reichlmaier S, Surf. Sci., 605, L57 (2011)
  39. Garcia-Vergara SJ, Skeldon P, Thompson GE, Habazaki H, Electrochim. Acta, 52(2), 681 (2006)
  40. Macak JM, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P, Angew. Chem.-Int. Edit., 44, 7463 (2005)
  41. Tsuchiya H, Macak JM, Ghicov A, Rader AS, Taveira L, Schmuki P, Corrosion Sci., 49, 203 (2007)
  42. Frochl T, Homann U, Kubiak P, Kucerova G, et al., Chem. Soc. Rev., 41, 5315 (2012)
  43. Kirchgeorg R, Kallert M, Liu N, Hahn R, Killian MS, Schmuki P, Electrochim. Acta, 198, 56 (2016)
  44. Han H, Song T, Lee EK, Devadoss A, Jeon Y, Ha J, Chung YC, Choi YM, Jung YG, Paik U, ACS Nano, 6, 8308 (2012)
  45. Wagemaker M, Borghols WJH, Mulder FM, J. Am. Chem. Soc., 129(14), 4323 (2007)
  46. Ivanov S, Cheng L, Wulfmeier H, Albrecht D, Fritze H, Bund A, Electrochim. Acta, 104, 228 (2013)
  47. Ryu WH, Nam DH, Ko YS, Kim RH, Kwon HS, Electrochim. Acta, 61, 19 (2012)
  48. Fang HT, Liu M, Wang DW, Sun T, Guan DS, Li F, Zhou J, Sham TK, Cheng HM, Nanotechnology, 20, 225701 (2009)
  49. Gao J, Qiu G, Li H, Li M, Li C, Qian L, Yang B, Electrochim. Acta, 329, 135175 (2020)
  50. Menendez R, Alvarez P, Botas C, Nacimiento F, Alcantara R, Tirado JL, Ortiz GF, J. Power Sources, 248, 886 (2014)
  51. Kim NY, Lee G, Choi J, Chem. Eur. J., 24, 19045 (2018)
  52. Heo BG, Ha JY, Kim YT, Choi JS, J. Ind. Eng. Chem., 96, 364 (2021)
  53. Kim D, Lee K, Roy P, Birajdar BI, Spiecker E, Schmuki P, Angew. Chem.-Int. Edit., 121, 9490 (2009)
  54. Kowalski D, Kim D, Schmuki P, Nano Today, 8(3), 235 (2013)
  55. Rhee O, Lee G, Choi J, ACS Appl. Mater. Interfaces, 8, 14558 (2016)
  56. Park J, Lee G, Choi J, J. Electrochem. Soc., 164(9), D640 (2017)
  57. Li DG, Chen DR, Wang JD, Liang P, Electrochim. Acta, 207, 152 (2016)
  58. Macak JM, Tsuchiya H, Schmuki P, Angew. Chem.-Int. Edit., 44, 2100 (2005)
  59. Park J, Choi J, Appl. Surf. Sci., 448, 212 (2018)
  60. Lee K, Mazare A, Schmuki P, Chem. Rev., 114(19), 9385 (2014)
  61. Indira K, Mudali UK, Nishimura T, Rajendran N, J. Bio. Tribocorros., 1, 1 (2015)
  62. Kim YT, Youk JH, Choi J, ChemElectroChem, 7, 1248 (2020)
  63. Park J, Kim S, Lee G, Choi J, ACS Omega, 3, 10205 (2018)
  64. Yoo H, Lee G, Choi J, RSC Adv., 9, 6589 (2019)
  65. Yerokhin A, Snizhko L, Gurevina N, Leyland A, Pilkington A, Matthews A, J. Phys. D-Appl. Phys., 36, 2110 (2003)
  66. Snizhko LO, Yerokhin AL, Pilkington A, Gurevina NL, Misnyankin DO, Leyland A, Matthews A, Electrochim. Acta, 49(13), 2085 (2004)
  67. Lee G, Kim S, Kim S, Choi J, Adv. Funct. Mater., 27, 170353 (2017)
  68. Wu J, He X, Li G, Deng J, Chen L, Xue W, Li D, Appl. Phys. Lett., 114, 043903 (2019)