화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.3, 290-298, June, 2021
복합 정제 공정에 따른 천연 흑연의 물리화학적 특성 변화가 리튬 이온 전지의 음극재 성능에 미치는 영향
Effect of Characteristic Change in Natural Graphite according to Complex Purification Process on Anode Performance for Lithium Ion Battery
E-mail:,
초록
천연 흑연의 음극재 적용을 위하여 정제 공정을 실시하였으며, 공정에 따른 흑연의 구조적 변화와 불순물 함량이 음극 특성에 미치는 영향을 고찰하였다. 천연 흑연은 불화암모늄과 황산을 동일 비로 하여 사용량을 달리한 산처리 및 온도(800~2500 ℃)를 달리한 열처리를 통하여 화학적/물리적으로 정제되었다. 산을 이용한 불순물 제거는 한계가 있었으며, 이후 진행된 2500 ℃까지의 열처리를 통해 Si과 같은 일부 원소를 제외하고 대부분의 불순물이 전량 제거되는 것을 확인하였다. 복합 정제 공정에 따라 제조된 흑연 음극재의 특성이 향상되었으며, 구조와 불순물 함량 변화는 각각 용량 및 속도 특성과 초기 쿨롱 효율에 지배적인 영향을 미쳤다. 복합 정제 공정은 흑연 구조를 향상시켰으며, 불순물을 효율적으로 제거하여 SEI층 형성 억제 및 Li+ 삽입 공간 확대를 통해 리튬 이온 전지의 성능을 향상시켰다.
A purification process was performed for the application of natural graphite as an anode material. The influence of the structural change and impurity content of graphite according to the process on the anode electrochemical characteristics was investigated. Natural graphite was chemically/physically purified by acid-treatment which used different amounts of solution of ammonium fluoride/sulfuric acid in the same ratio and thermal treatment used different temperatures (800~2500 ℃). Acid-treatment had limitation to remove impurities, and identified that all impurity contents was removed except some traces of atom such as Si by after progressed thermal-treatment until 2500 ℃. The anode materials characteristic of graphite treated by purification process was improved, and changes in the structure and impurity contents affected dominantly the capacity, rate property and initial Coulombic efficiency. Consequently, the complex purification process improved the graphite structure and also the performance of lithium ion battery by controlling the excessive formation of solid electrolyte interphase and expanding Li+ insertion space originated from the effective removal of impurities.
  1. Hannan MA, Lipu MH, Hussain A, Mohamed A, Renew. Sust. Energ. Rev., 78, 834 (2017)
  2. Gonzalez AF, Yang NH, Liu RS, J. Phys. Chem. C, 121(50), 27775 (2017)
  3. Dimov N, Kugino S, Yoshio M, Electrochim. Acta, 48(11), 1579 (2003)
  4. Manthiram A, ACS Central. Sci., 3(10), 1063 (2017)
  5. Nie M, Abraham DP, Chen Y, Bose A, Lucht BL, J. Phys. Chem. C, 117(26), 13403 (2013)
  6. Asenbauer J, Eisenmann T, Kuenzel M, Kazzazi A, Chen Z, Bresser D, Sustain. Energ. Fuels., 4(11), 5387 (2020)
  7. Xing BL, Zhang CT, Cao YJ, Huang GX, Liu QR, Zhang CX, Chen ZF, Yi GY, Chen LJ, Yu JL, Fuel Process. Technol., 172, 162 (2018)
  8. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL, Carbon, 105, 52 (2016)
  9. Zhao HP, Ren JG, He XM, Li JJ, Jiang CY, Wan CR, Electrochim. Acta, 52(19), 6006 (2007)
  10. Jara AD, Kim JY, Mater. Today Commun., 25, 101437 (2020)
  11. Zaghib K, Song X, Guerfi A, Rioux R, Kinoshita K, J. Power Sources, 119, 8 (2003)
  12. Jara AD, Betemariam A, Woldetinsae G, Kim JY, Int. J. Min. Sci. Technol., 29, 671 (2019)
  13. Wang H, Feng Q, Tang X, Liu K, Sep. Sci. Technol., 51, 2465 (2016)
  14. Laziz NA, Abou-Rjeily J, Darwiche A, Toufaily J, Outzourhit A, Ghamouss F, Sougrati MT, J. Electrochem. Soc. Technol., 9(4), 320 (2018)
  15. Kim BG, Choi SK, Park CL, Chung HS, Jeon HS, Part. Sci. Technol., 21(4), 341 (2003)
  16. Lloyd R, Turner MJ, US Patent 4,780,112 (1988).
  17. Matsumoto T, Hoshikawa T, US Patent 5,419,889 (1995).
  18. Saito Y, Yoshikawa T, Inagaki M, Tomita M, Hayashi T, Chem. Phys. Lett., 204(3-4), 277 (1993)
  19. Ding X, Wang R, Zhang X, Zhang Y, Deng S, Shen F, Wang L, Mar. Pollut. Bull., 81(1), 185 (2014)
  20. Shi H, Barker J, Saidi MY, Koksbang R, J. Electrochem. Soc., 143(11), 3466 (1996)
  21. Gallego NC, Contescu CI, Meyer HM, Howe JY, et al., Carbon, 72, 393 (2014)
  22. Bouleghlimat E, Davies PR, Davies RJ, Howarth R, Kulhavy J, Morgan DJ, Carbon, 61, 124 (2013)
  23. Peled E, Menachem C, Bartow D, Melman A, J. Electrochem. Soc., 143(1), L4 (1996)
  24. Leung K, Budzien JL, Phys. Chem. Chem. Phys., 12(25), 6583 (2010)
  25. Lin YX, Huang ZH, Yu XL, Shen WC, Zheng YP, Kang FY, Electrochim. Acta, 116, 170 (2014)
  26. Christensen J, Newman J, J. Electrochem. Soc., 150(11), A1416 (2003)
  27. Mochida I, Ku CH, Yoon SH, Korai Y, J. Power Sources, 75(2), 214 (1998)
  28. Anik U, Cevik S, Pumera M, Nanoscale Res. Lett., 5(5), 846 (2010)
  29. Ishii T, Kaburagi Y, Yoshida A, Hishiyama Y, Oka H, Setoyama N, Ozaki J, Kyotani T, Carbon, 125, 146 (2017)
  30. Alfonsetti R, Lozzi L, Passacantando M, Picozzi P, Santucci S, Appl. Surf. Sci., 70, 222 (1993)
  31. Aaraes TS, Ringdalen E, Tangstad M, Sci. Rep., 10(1), 1 (2020)
  32. Knight MW, King NS, Liu L, Everitt HO, Nordlander P, Halas NJ, ACS Nano, 8(1), 834 (2014)
  33. Wang Q, Ma Y, Liu L, Yao S, Wu W, Wang Z, Ostrikov KK, Nanomaterials, 10(4), 782 (2020)
  34. Tougaard S, Surf. Interface Anal., 50(6), 657 (2018)
  35. Lesiak B, Kover L, Toth J, Zemek J, Jiricek P, Kromka A, Rangam N, Appl. Surf. Sci., 452, 223 (2018)
  36. Contarini S, Howlett SP, Rizzo C, De Angelis BA, Appl. Surf. Sci., 51(3-4), 177 (1991)
  37. Kundu S, Wang Y, Xia W, Muhler M, J. Phys. Chem. C, 112(43), 16869 (2008)
  38. Dupin JC, Gonbeau D, Vinatier P, Levasseur A, Phys. Chem. Chem. Phys., 2(6), 1319 (2000)
  39. Friedman AK, Shi WQ, Losovyj Y, Siedle AR, Baker LA, J. Electrochem. Soc., 165(11), H733 (2018)
  40. Song JW, Nguyen CC, Song SW, RSC Adv., 2(5), 2003 (2012)
  41. Zhu H, Shiraz MHA, Liu L, Hu Y, Liu J, Nanotechnology, 32(14), 144001 (2021)
  42. Hawn DD, DeKoven BM, Surf. Interface Anal., 10(2-3), 63 (1987)
  43. Hang BT, Watanabe I, Doi T, Okada S, Yamaki JI, J. Power Sources, 161(2), 1281 (2006)
  44. Bar-Tow D, Peled E, Burstein L, J. Electrochem. Soc., 146(3), 824 (1999)