Journal of Industrial and Engineering Chemistry, Vol.99, 352-363, July, 2021
Cu-doped TiO2 hollow nanostructures for the enhanced photocatalysis under visible light conditions
E-mail:
We report a synthetic strategy for fabricating Cu-doped TiO2 hollow nanostructure for visible light responsive photocatalysis. Hollow Cu-doped TiO2 photocatalysts were prepared by sol.gel coating of TiO2 on the surface of SiO2, removal of sacrificial core, Cu2+ ion exchange, and calcination followed by acid leaching. The ion exchanged Cu species allows TiO2 shell to be preferentially crystallized rutile phase, even at low calcination temperature. The acid leaching allows the excess bulk CuO to be dissolved out and Cu-doped TiO2 to expose more reactive TiO2 surface. No measurable CuO composites were observed while uniformly distributed Cu species is detected in acid treated CT-X-HCl samples indicating the Cu2+ ions were homogeneously doped into crystalline TiO2 frameworks. In particular, the CT-650-HCl catalyst that was prepared by calcination at 650 °C, followed by HCl leaching, showed beneficial physio-chemical properties, such as narrow bandgap, mixed anatase-rutile crystalline phase, and more reactive TiO2 surface with high surface area, resulting in the best photocatalytic performance towards phenol degradation under visible light conditions.
- Qu J, J. Environ. Sci., 20, 1 (2008)
- Banat FA, Al-Bashir B, Al-Asheh S, Hayajneh O, Environ. Pollut., 107, 391 (2000)
- Lin KL, Pan JY, Chen YW, Cheng RM, Xu XC, J. Hazard. Mater., 161(1), 231 (2009)
- Suzuki H, Araki S, Yamamoto H, J. Water Process Eng., 7, 54 (2015)
- Guo J, Al-Dahhan M, Ind. Eng. Chem. Res., 42(12), 2450 (2003)
- Singh N, Song Y, Gutierrez OY, Camaioni DM, Campbell CT, Lercher JA, ACS Catal., 6, 7466 (2016)
- Zagklis DP, Vavouraki AI, Kornaros ME, Paraskeva CA, J. Hazard. Mater., 285, 69 (2015)
- Yamagishi T, Leite J, Ueda S, Yamaguchi F, Suwa Y, Water Res., 35, 3089 (2001)
- Xiong X, Xu Y, J. Phys. Chem. C, 120, 3906 (2016)
- Adan C, Bahamonde A, Fernandez-Garcia M, Martinez-Arias A, Appl. Catal. B: Environ., 72(1-2), 11 (2007)
- Murcia JJ, Hidalgo MC, Navio JA, Arana J, Dona-Rodriguez JM, Appl. Catal. B: Environ., 179, 305 (2015)
- Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MH, J Mater. Chem. A, 2, 637 (2014)
- Zhou W, Li W, Wang JQ, Qu Y, Yang Y, Xie Y, Zhang KF, Wang L, Fu HG, Zhao DY, J. Am. Chem. Soc., 136(26), 9280 (2014)
- Hanaor DAH, Sorrell CC, J. Mater. Sci., 46(4), 855 (2011)
- Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K, Entezari MH, Dionysiou DD, Appl. Catal. B: Environ., 125, 331 (2012)
- Quesada J, Arreola-Sanchez R, Faba L, Diaz E, Renteria-Tapia VM, Ordonez S, Appl. Catal. A: Gen., 551, 23 (2018)
- Zhang K, Wnag L, Kim JK, Ma M, Veerappan G, Lee CL, Kong KJ, Lee H, Park JH, Energy Environ. Sci., 9, 499 (2016)
- Kim NY, Lee HK, Moon JT, Joo JB, Catalysts, 9, 491 (2019)
- Yun HJ, Lee H, Joo JB, Kim ND, Kang MY, Yi J, Appl. Catal. B: Environ., 94(3-4), 241 (2010)
- Sathish M, Viswanathan S, Viswanath SR, Gopinath CS, Chem. Mater., 17, 6349 (2005)
- Lin CJ, Yang WT, Chem. Eng. J., 237, 131 (2014)
- Mathew S, Ganguly P, Rhatigan S, Kumaravel V, Byrne C, Hinder SJ, Bartlett J, Nolan M, Pillai SC, Appl. Sci., 8, 2067 (2018)
- Byrne C, Moran L, Hermosilla D, Merayo N, Blanco A, Rhatigan S, Hinder S, Ganguly P, Nolan M, Pillai SC, Appl. Catal. B: Environ., 246, 266 (2019)
- Wang XJ, Feng J, Bai YC, Zhang Q, Yin YD, Chem. Rev., 116(18), 10983 (2016)
- Peng B, Meng X, Tang F, Ren X, Chen D, J. Phys. Chem. C, 113, 20240 (2009)
- Joo JB, Vu A, Zhang Q, Dahl M, Gu M, Zaera F, Yin Y, ChemSusChem, 6, 2001 (2013)
- Joo JB, Dahl M, Li N, Zaera F, Yin Y, Energy Environ. Sci., 6, 2082 (2013)
- Joo JB, Lee I, Dahl M, Moon GD, Zeara F, Yin Y, Adv. Funct. Mater., 23, 4246 (2013)
- Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62 (1968)
- Joo JB, Zhang Q, Lee I, Dahl M, Zaera F, Yin YD, Adv. Funct. Mater., 22(1), 166 (2012)
- Joo JB, Liu HY, Lee YJ, Dahl M, Yu HX, Zaera F, Yin YD, Catal. Today, 264, 261 (2016)
- Moon JT, Lee SK, Joo JB, Beilstein J. Nanotechnol., 9, 1715 (2018)
- Karunakaran C, Abiramasundari G, Gomathisankar P, Manikandan G, Anandi V, J. Colloid Interface Sci., 352(1), 68 (2010)
- Hu QQ, Huang JQ, Li GJ, Jiang YB, Lan H, Guo W, Cao YG, Appl. Surf. Sci., 382, 170 (2016)
- Hurum DC, Agrios AG, Gray JA, Rajh T, Thurnauer MC, J. Phys. Chem. B, 107, 3545 (2003)
- Marschall R, Adv. Funct. Mater., 24(17), 2421 (2014)
- Bickley RI, Gonzalez-Carreno T, Lees JS, Palmisano L, Tilley RJD, J. Solid State Chem., 92, 178 (1991)
- Augustynski J, Electrochim. Acta, 38, 43 (1993)
- Fox MA, Dulay MT, Chem. Rev., 93, 341 (1993)
- Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
- Fujishima A, Zhang X, Tryk DA, Surf. Sci. Rep., 63, 515 (2008)
- Yun HJ, Lee H, Joo JB, Kim ND, Yi J, Electrochem. Commun., 12, 769 (2010)
- Kaur R, Kaur A, Kaur R, Singh S, Bhatti MS, Umar A, Baskoutas S, Kansal SK, Adv. Powder Technol., 32, 1350 (2021)
- Bhuyan T, Khanuja M, Sharma R, Patel S, Reddy MR, Anand S, Varma A, J. Nanopart. Res., 17, 288 (2015)
- Pongwan P, Wetchakun K, Phanichphant S, Wetchakun N, Res. Chem. Intermed., 42, 2815 (2016)
- Reda SM, Khairy M, Mousa MA, Arab. J. Chem., 13, 86 (2020)
- Sajjad S, Leghari SAK, Zhang J, RSC Adv., 3, 12678 (2013)